

Developments in CALIOP Aerosol Products

Dave Winker

NASA Langley Research Center Hampton, VA

ICAP Meeting, Tsukuba, November 2013

Level 3 aerosol product (beta-version)

Version 4 Level 1 product

A few CALIOP assimilation results

Product Plans

Beta-version of Level 3 aerosol product available since 2012
 Scheduled for update to Provisional "soon"

Validation of Level 2 products continues

Emphasis during the last year has been on development of new Version 4 Level 1 product with improved calibration

- > 532 night: reduction of tropical bias (stratospheric aerosol)
- > 532 day: reduction of day/night bias
- > 1064: reduction of latitudinal bias

Other new Level 2/3 products also in development

Gridded monthly-average profiles:

- Beta-version reported on a $2^{\circ} \times 5^{\circ}$ grid (lat x long)
- Extensive quality control applied to Level 2 extinction data
- Extinction in 'clear-air' set to 0.0 km⁻¹ and averaged along with retrievals
- Several types of near-surface artifacts are removed
- Available from June 2006, updated monthly
- Reference:
 - Winker et al., 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, ACP

2008 Annual Mean

Vertically Resolved AOD

CALIPSC

Global Mean AOD

Aerosol Type, JJA 2008

Depolarization allows robust identification of dust

Profile Validation

Standard Retrieval vs. Full-Column

South Pacific (SON)

Northwest Pacific (MAM)

(Winker et al., ACP, 2013)

ICAP Meeting, Tsukuba, November 2013

Near-surface Extinction Decrease

- Over ocean, negative spikes are sometimes found at -20 m or +10 m
 - Should be part of the surface return
- Affects only the lowest two range bins
- Will be mitigated in next version of Level 3 aerosol product

Version 4 Level 1

ICAP Meeting, Tsukuba, November 2013

Winker - 15

V3 night: backscatter signal normalized to model atmosphere, 30-34 km

V3 day: daytime normalized to nighttime, 8-12 km

Version 3

- Aerosol at 30 34 km, mostly tropical, biases 532 nm night calibration
- Day-night calibration biases

Version 4

- Night calibration region raised to 36 - 39 km
- Day calibration region raised above tropopause
- Average over multiple orbits

(Vernier, et al., JGR, 2009)

532 nm Night: V4 Performance

V4: 30-34 km scattering ratios (SR) consistent with Vernier (2009) and GOMOS

clear air 8-12 km: V3) SR < 1 in tropics (non-physical). V4) SR > 1 for all seasons

ICAP Meeting, Tsukuba, November 2013

532 nm SR of background aerosol using V3 aerosol/cloud mask

Nighttime clear-air R' Jul 2010, V3, no SAA Nighttime clear-air R' Apr 2010, V3, no SAA 40 40 1.4 V3, April V3, July 1.3 30 30 1.2 Altitude (km) 1.1 20 20 1 10 10 0.9 0.8 0 0 -80 -60 -20 20 40 60 80 -20 20 40 60 80 -40 0 -80 -60 -40 0 Latitude (⁰) Latitude (⁰) Nighttime clear-air R' Apr 2010, Test00004, no SAA Nighttime clear-air R' Jul 2010, Test00004, no SAA 1.4 40 40 V4, July 1.3 V4, April 30 30 1.2 Altitude (km) 1.1 20 20 10 10 0.9 0.8 0 0 -20 20 -80 -60 -40 40 60 80 0 -80 -60 -40 -20 20 40 60 80 0 Latitude (⁰) Latitude (⁰)

CALIPSC

ICAP Meeting, Tsukuba, November 2013

Winker - 18

V4 532 nm Daytime Calibration

ICAP Meeting, Tsukuba, November 2013

Winker - 21

ICAP Meeting, Tsukuba, November 2013

Winker - 22

1064 nm calibration: normalized to 532 nm cirrus returns assuming $\chi = 1$

Version 3

1064 nm channel shows large latitudinal biases in calibration

Version 4

- 1) Improved selection of "calibration clouds"
- 2) Improved sampling
- Calibration scale factors now computed as function of latitude

Similar latitudinal trends in color ratio from water clouds, ice clouds and ocean surface

Now as Function of Latitudinal

V3: Orbit-average calibration computed, represented by a single coefficient

V4: Calibration applied as a function of latitude, requires averaging over multiple granules

Improved Cloud Selection in V4

ICAP Meeting, Tsukuba, November 2013

CALIPSC

Decimal logarithm of the number of calibration clouds

Revised cloud selection scheme improves sampling in V4, reducing both random and systematic errors

ICAP Meeting, Tsukuba, November 2013

Cirrus Color Ratio Trend: V3 vs V4

ICAP Meeting, Tsukuba, November 2013

CALIPSC

Processing of Version 4 to begin next month

Processing of full mission expected to continue through mid-2014
 Contingent on availability of new GMAO met data

Production of Version 3 Level 1 and Level 2 will continue as-is until V4 Level 2 becomes available

A few assimilation examples

ICAP Meeting, Tsukuba, November 2013

Winker - 29

Assimilation Experiment: Tokyo U.

CALIOP nighttime Level 1 profiles assimilated into global aerosol transport model

- > SPRINTARS driven by MIROC
- Local Ensemble Transform Kalman filter assimilation scheme
- Assimilation observation operator assumes single scattering, treats dust as spheroids
- Improves agreement with AERONET AOD at Dhadnah
 - Decreases dust in free troposphere
 - Increases dust loading in PBL

Nick Schutgens & Eiji Oikawa, Tokyo U.

NRL: Performance Evaluation

- Since coupled 2D/3DVAR is constrained by 2DVAR prior for AOD, particle mass is conserved.
- We see little skill improvement at 00-hr analysis, but increasing skill through forecast
- By redistributing model mass with CALIOP, forecast AODs improve downwind
- Greater improvement over land where passive sensors experience difficulties
- New paper by Zhang et al. describes sequential improvement to NAAPS AOD v. AERONET with each satellite dataset added to assimilation
- CALIOP datasets represent 1/100th of potential x, y spatial data volume of MODIS/MISR, yet produce significant improvement through forecast.
- Will only improve further with future multisatellite lidar arrays and ensemble DA

ICAP Meeting, Tsukuba, November 2013

Product Plans

ICAP Meeting, Tsukuba, November 2013

Winker - 33

V4L1 production to begin next month

- > Schedule contingent on availability of new GMAO met data
- > Next step in validation is evaluation of new Level 2 products
- Release of a Level 2 PSC product is imminent
- Level 3 Aerosol product
 - $> \beta$ -version currently available
 - > An improved "Provisional" release scheduled for early 2014
 - > Change grid to 2°x 2°??
- Stratospheric product in development- built on V4 L1
- A Level 1.5 "re-analysis" product is being considered
 Product of current Level 1.5 NRT will continue, based on V3

CALIOP has been able to extend the multi-decade SAGE climatology
 Developed as a research product, will be refined and released next year as an official CALIPSO data product

- Proposed grid: 5 x 20 degs x 360 m, tropopause to 40 km
- Monthly files

SAGE II

CALIOP

Version 4 Level 2 in development

- > Once V4 Level 1 is in production, focus shifts to Level 2
- > Will be used for higher-level validation of V4 Level 1

Level 3 cloud product

Based on V4 Level 2

- Level 3 aerosol product
 - > Will be updated when V4 Level 2 is available

Other Activities

OCO-2

- Will fly in A-train ahead of CALIPSO
- Launch: summer 2014
- CALIOP data will be used to evaluate OCO-2 retrievals
- > Aerosol absorption retrieval in development
 - ✓ combines CALIOP with OCO-2 O_2 A-band radiances ($\Delta\lambda$ = 0.05 nm)

CATS-ISS

- To be operated on ISS JEM platform
- Launch: June 2014 on H-2
- CALIPSO team will produce CALIPSO-like product from CATS mode 1 data
- OCO-3 also planned for ISS JEM

SPARE

ICAP Meeting, Tsukuba, November 2013

Six different operating modes:

Science Mode	Laser	Wavelength (nm)							IFOV			
		10 	64 ⊥		532 ⊥	HSRL	35	55 ⊥	LSFOV	RSFOV	FFOV	AFOV
1	1	Х	Х	Х	Х				Х	Х		
2	2a	Х	Х	Х		Х						Х
3	2b	Х	Х	Х	Х		Х	Х			Х	
4	2c	Х	Х	Х	Х				Х			
5	2c	Х	Х	Х	Х					Х		
6	2c	Х	Х	Х	Х						Х	