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Objective mesoscale verification 

•  Verify against observations 
•  Build samples with a sufficient number of 

cases 
•  Make an attempt at significance testing 
•  Usually several scores needed to understand 

the story 
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Fundamentals 

•  Forecast errors and observation errors are 
generally the same order of magnitude 

•  Model errors (inadequacy) can be as 
important as initial-condition errors 
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Consequences 

•  Forecast errors cannot be perfectly known 
–  But given a sufficient sample the statistics of the errors can be 

estimated  
–  Requires many forecasts to say anything meaningful 

•  Analysis errors cannot be perfectly known 
–  But given a sufficient sample the statistics of the analysis errors can be 

estimated 
–  Using analyses as a verification reference requires that analysis errors 

be considered (somewhat defeating the purpose!) 

•  Observation errors should be considered when possible 
–  Biased observations can dominate forecast error statistics 

•  Large samples are often needed 
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Mesoscale error growth 

Highly skillful deterministic predictions of scales of O(1-10 km) are 
unreasonable to expect under most conditions and most norms.  
•  Deterministic systems behave probabilistically 
•  Deterministic skill is difficult to detect 
•  Errors quickly grow to observation error levels 

Prob. contours 

Deterministic 
precip. prediction 
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Large scales Small scales 

Scale-dependent predictability 

From Lorenz (1969): Errors grow up-scale, and small-
scale growth is much faster than large-scale growth. 

Fast 

Slow 
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FIG. 1. Time series of the slow variable ys (lower curve) and of the fast variable zf (upper curve) on the attractor.
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FIG. 2. Typical error growth for the fast component δxf (upper curve) and for the slow component δxs in the coupled

Lorenz models with δxf (0) = 10−8 and δxs(0) = 10−12, averaged over 500 samples. In order to detect the typical behavior we
compute the average of the logarithm. The dashed lines show the exponential growths with exponents λ(f) and λ(s).
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Large, slow 

Small, fast 

Mesoscales are analogous to small, fast scales here 
•  Rapidly reach saturation 
•  If not normalized, saturation at much smaller levels 

of error energy than large (synoptic) scales 



8 

Mesoscale error growth 

•  Given a sufficient sample size: 
•  Estimate mean errors (often called bias) 
•  Estimate error variances 

•  Given an even bigger sample: 
•  Break domain into sub-regions before averaging scores 

to avoid over-estimating skill 
•  Verify temporal variances and/or spatial variances 

NOTE: For now addressing deterministic skill 
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Verification against observations 

•  The data assimilation process filters high 
wavenumbers (analyses are filtered) 
–  Filters observational noise  
–  Filters background “noise” (really unpredictable scales) 
–  Some physical features can be filtered 

•  Avoids complications from systematic errors in 
analyses 
–  From model used in analysis 
–  From data assimilation used in analysis 

•  Forward operators 
•  Ensemble size 
•  Static/stationary error covariances 
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Systematic errors 
•  Analyses retain at least some part of model bias 
•  Analyses retain at least some part of observation 

bias 

for σ b
2 =σ o

2 =σ 2,  and an unbiased observation:

xa =
1
2
xb + yo( )

E xa( ) = 1
2
E xb + yo( ) = 1

2
E xt +εb + yt +εo( ) = 1

2
E xt( )+βb +E yt( )+βo!" #$

E xa( ) = 1
2
E xt( )+E yt( )!" #$+

1
2
βb



11 

Systematic errors 
•  Analyses retain at least some part of model bias 
•  Analyses retain at least some part of observation 

bias 

for σ b
2 =σ o

2 =σ 2,  and an unbiased model:

xa =
1
2
xb + yo( )

E xa( ) = 1
2
E xb + yo( ) = 1

2
E xt +εb + yt +εo( ) = 1

2
E xt( )+βb +E yt( )+βo!" #$

E xa( ) = 1
2
E xt( )+E yt( )!" #$+

1
2
βo



12 

Inconsistent biases 

•  Bias differences can 
appear quickly in a 
forecast (within most 
data assimilation 
cycling interval 
lengths) 

•  Biases can vary 
widely from model to 
model 

•  Bias differences can 
easily exceed 
observation error 

2-m RH bias at valley observing 
stations for 10 different WRF 
configurations 
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Observation errors 
•  Instrument error 

– bias and random error 
– may or may not be state dependent 

•  Random representativeness error 
– difference between modeled scales and 

observed scales 
– may or may not be state dependent 

•  Systematic representativeness error 
– constant (bias)  
– state dependent 
– must be known to do something about it 
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Observing scales 
Skamarock (2004) 

Kinetic energy spectra 

•  An observation “sees” all 
scales of motion slower than 
its sampling rate 

•  Difference between variance 
in model and variance in an 
observation viewed as 
representativeness 

Time-averaging an 
observation reduces the 
representativeness error, 
but not always clear in what 
way. 
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Including observation uncertainty 
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Incl. obs. error
Not incl. obs. error

•  Random errors in 
unbiased observations 

•  If included, the canonical 
underdispersive 
ensemble becomes 
pretty good or possibly 
overdispersive 

•  Is this an accurate 
estimate of the 
observation error 
variance? Probably not 
in this case… 
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Data assimilation to estimate random 
observation uncertainty 

•  Derived from estimation 
theory 

•  Analogous to statistical 
consistency in ensemble 
prediction 

•  Result is for a particular 
model and data assimilation 
system 

•  Requires a good data 
assimilation system as a 
basis for estimation 

forecast error = forecast uncertainty + observation uncertainty  
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Systematic observation errors 
•  Difficult (not impossible) to distinguish between model bias 

and observation bias in data assimilation 

For σ b
2 =σ o

2 =σ 2  and an unbiased forecast:

xa − xb =
1
2
xb + yo( )− xb =

1
2
yo − xb( )

2E xa − xb( ) = E yo − xb( ) = E yt −εb − xb( ) = E yt( )+βo −E xb( )"# $%

                   = E xt( )+βo −E xt( )−E εb( )"# $%= βo

Given an unbiased model, it is easy to estimate 
observation bias. 
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Systematic model errors 
•  Difficult (not impossible) to distinguish between model bias 

and observation bias in data assimilation 

For σ b
2 =σ o

2 =σ 2  and an unbiased observation:

xa − xb =
1
2
xb + yo( )− xb =

1
2
yo − xb( )

2E xa − xb( ) = E yo − xb( ) = E yo − xt −εb( ) = E yo( )−E xt( )−βb"# $%

                   = E xt( )+E εo( )−E xt( )−βb"# $%= βb

Given an unbiased observation, it is easy to 
estimate model bias. 

It is possible to estimate both both observation and model 
biases simultaneously in data assimilation; a set of 
unbiased observations makes life easier. 
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Verification sample size 
•  As large as possible 
•  Necessary sample size depends on how samples 

are formed 
•  Key is ability to form independent samples 

–  Large spatial distances between observing points 
–  Different microclimates (mean conditions and variability) 

•  Examples: 
–  Global prediction systems can provide good statistics with 

~2 weeks of forecasts 
–  Mesoscale/regional prediction systems may require much 

more than a month 
–  Can be improved by spreading cases out in time 
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Significance testing 
a b

c d

2-m T 70-kPa T 

10-m Spd 70-kPa Spd 

•  Test on score differences to avoid under-estimating significance 
•  Here bootstrapping is a useful approach (not perfect) 
•  Room for creativity 
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Probabilistic mesoscale forecasting 
•  No silver bullet 
•  Need to look at several scores or metrics 
•  The goal is usually phrased: maximize resolution subject 

to reliability 
–  Reliability: climatological agreement between probabilistic 

forecasts and observations 
–  Resolution: skill in predicting probabilities that are far from the 

climatological mean probability 
–  Discrimination: events versus non-events 

•  Methods (examples):  
–  Rank histograms (reliability) 
–  Receiver Operating Characteristic (ROC) curve (discrimination) 
–  Attributes diagram (reliability, resolution, discrimination, sharpness, 

conditional bias) 
–  Rank probability score and related (reliability and resolution) 
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Resolution and reliability tradeoffs 

Decomposition of Brier Skill Score differences shows one forecast 
system has better reliability, resolution, and discrimination. This 
consistency is not guaranteed.  
 
From Rostkier-Edelstein and Hacker, 2013: Impact of Flow Dependence, Column Covariance, and Forecast Model Type on Surface-Observation Assimilation for Probabilistic 
PBL Profile Nowcasts. Wea. Forecasting, 28, 29–54. 
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Neighborhood methods 
•  Rely on: 

– Fact that exact timing and location is not 
predictable 

–  Intuition for what range of spatial or temporal 
errors are acceptable 

•  Recognize lack of deterministic skill 
•  Related to “fuzzy” methods 
•  Several published methods available 
•  Observation errors not yet considered in any 

work using neighborhood methods (that I 
know of)  
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Neighborhood methods 

Equitable Threat Score (ETS) as a function of radius around a 
grid point. ETS compares hits to hits by chance. 
 
 
From Clark et al., 2010: Neighborhood-Based Verification of Precipitation Forecasts from Convection-Allowing NCAR WRF Model 
Simulations and the Operational NAM. Wea. Forecasting, 25, 1495–1509. 

Radius and skill increase 
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Neighborhood methods 

Fig. 16.  FSS as a function of radius of influence based on hourly precipitation aggregated over the first 12 forecast hours 
and all forecasts for (a) 0.25, (b) 0.5, (c) 1.0, (d) 5.0, (e) 10.0, and (f) 20.0 mm/hr accumulation thresholds.  Bounds of the 
90% confidence intervals are shown and the range of the individual ensemble members’ FSS is shaded in grey. 

(a)$0.25$mm/hr$ (b)$0.5$mm/hr$ (c)$1.0$mm/hr$

(d)$5.0$mm/hr$ (e)$10.0$mm/hr$ (f)$20.0$mm/hr$
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Fractional Skill Score for of various forecast methods as a 
function of radius. 90% confidence intervals from 
bootstrapping. 
 
From Schwartz et al., 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble 
initialized by a mesoscale ensemble Kalman filter. Wea. and Forecast., Early Online Release. 
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Summary 

•  Verification against observations a necessity 
•  Sample size and observation errors matter for 

mesoscale forecast verification 
•  We can learn from data assimilation 
•  Neighborhood (and related) methods are 

useful when intuition about forecast utility is 
available 

•  No single score/metric can tell the story 


