

Principal Investigator: Brent Holben, NASA GSFC

#### Instrumentation, Calibration & Maintenance:

Mikhail Sorokin, Sigma Space Jon Rodriguez, Sigma Space Jason Kraft, Sigma Space

#### Data Processing, Database, & Web Support:

Ilya Slutsker, Sigma Space David Giles, Sigma Space

#### Calibration & Quality Assurance:

Thomas Eck, USRA Alexander Smirnov, Sigma Space Joel Schafer, Sigma Space

#### Administrative Support and Shipping:

Amy Scully, Sigma Space

#### Scientific Research:

Brent Holben, NASA GSFC Thomas Eck, USRA Alexander Smirnov, Sigma Space Aliaksandr Sinyuk, Sigma Space David Giles, Sigma Space Joel Schafer, Sigma Space

## **AERONET Update**

Brent Holben David Giles

#### ICAP Workshop October 22, 2014

AERONET is funded by the NASA Earth Observing System project office and the Radiation Sciences Program (NASA HQ), Joint Polar Satellite System (NOAA), and large field campaigns such as SEAC4RS and DISCOVER-AQ



# Outline

- V3 Automatic Cloud Screening
- V3 Automatic Quality Assurance
- V3 Current Status
- Data Acquisition Methods: Current and Planned
- Summary

### **AERONET Version 3 Cloud Screening**

- New Level 1.5 AOD  $_{\rm 500nm}$  and  $\alpha_{\rm 440-870nm}$  statistically very close to V2 Level 2.0
- Improperly filtered highly variable AODs (dominated by fine aerosols) will be, at least partly, restored in the V3 database
- Stable thin cirrus becomes less of a problem (less residual contamination)

| Nauru, #168, 2000-2005, 2010 |       |      |      |  |
|------------------------------|-------|------|------|--|
|                              | N     | AOD  | α    |  |
| Lev 1.0                      | 25579 | 0.23 | 0.09 |  |
| Lev 1.5                      | 13326 | 0.11 | 0.33 |  |
| Lev 2.0                      | 9371  | 0.08 | 0.58 |  |
| NEW Lev 1.5                  | 7879  | 0.08 | 0.55 |  |

0000 000F

|             | N     | AOD  | α    |  |
|-------------|-------|------|------|--|
| Lev 1.0     | 25500 | 0.61 | 0.58 |  |
| Lev 1.5     | 8680  | 0.45 | 0.79 |  |
| Lev 2.0     | 6920  | 0.34 | 1.21 |  |
| NEW Lev 1.5 | 5029  | 0.33 | 1.40 |  |

Singanore #22, 2007-2011

### **AERONET Version 3 Cloud Screening**

#### More highly variable AOD preserved

#### Nes Ziona, 5/27/2005- New Level 1.5





## AERONET Version 3 Automatic QA Solar Eclipse Screening

- AOD affected periodically by solar eclipses of varying magnitudes
  - Partial, Annular, Total, Hybrid
- Given extraterrestrial radiation is changing during an eclipse (Vo), the resulting reduction in measured irradiance (V) during an eclipse using a constant (Vo) results in increasing AOD
- Eclipse-induced increase in AOD results in poor almucantar inversion results (e.g., very low SSA)
  Maximum Solar Eclipse





# AERONET Version 3 Automatic QA Sensor Head Temperature Screening

- Sensor Head Temperature Anomalies
  - Control box saves erroneous sensor head temperature values due to electronic issues inside the control box, sensor head cable, or sensor head.
  - Issue: Erroneous sensor head temperatures adversely affect the magnitude of AOD for temperature sensitive channels (mainly 1020nm).



## AERONET Version 3 Automatic QA Collimator Consistency Check

• <u>%AK Difference</u>: Calculate left and right %differences in 6° scattering angle aureole A and K radiances for each sky wavelength of Principal Plane

 $|\%\Delta AK| = | [[R_a(6^\circ) - R_k(6^\circ)]/max(R_{ak}(6^\circ))] *100 |$ 

- All instrument types (detects incorrect filter gains in InGaAs instruments)
- Determine if %AK difference exceeds 10% for three or more wavlengths





## AERONET Version 3 Automatic QA Collimator Consistency Check

- <u>1020nm AOD Difference</u>: Calculate 1020nm AOD Difference (Silicon-InGaAs)
  - Only instruments with InGaAs detector (SWIR)
  - Determine if the value exceeds the limit of 0.06/m (where m is the air mass)



## AERONET Version 3 Automatic QA Diurnal Dependence of AOD Check

#### Concave

- -- Decreased filter transmittance
- -- Obstruction in collimator or on sensor head window
- -- Filter dust or broken desiccant pack inside the sensor head
- -- Incorrect gain setting
- Error in AOD is dependent on the c.a. cosine of the solar zenith angle

### $\delta \tau = 1/m * \delta Vo/Vo$

• For the morning, afternoon, or day and AOD versus the cosine of the solar zenith angle relationship, calculate the slope, correlation coefficient, and rms

#### Convex

- -- Increased filter transmittance
- -- Filter degradation
- -- Incorrect gain setting



# AERONET Version 3 Automatic QA Spectral Dependence of AOD Check

- AOD with channel out of spectral wavelength dependence
  - Non-linear calibration change
  - Out of band leakage
  - Improperly set gain(s)
  - Dust on filter(s)
  - Dark current too high
  - Electronic
  - Bad temperature affecting temperature sensitive AOD



## AERONET Version 3 Current Status Ancillary Data Sets

- Implement spectral temperature corrections (-40°C to +60°C)
- Update to OMI L3 NO<sub>2</sub> climatology (2004-2013)
- Continue to use TOMS O<sub>3</sub> climatology (1978-2004)
- Continue to use NCEP Reanalysis for atmospheric pressure (1993-present)
- Utilize ASTER Global Elevation Model

ASTER Global Digital Elevation Model (GDEM) Version 2



Source: Ministry of Economy, Trade, and Industry (METI) of Japan and NASA





### **AERONET Version 3 Current Status** Inversions

- Implement a vector radiative transfer code
  - radiation field in UV (e.g., 380 nm retrieval)
  - degree of linear depolarization
- Integrate extinction profiles to estimate
- aerosol vertical profile (MERRA2 or CALIOP) products
- Estimate uncertainties for each retrieval (e.g., random error plus biases due uncertainty in AOD and sky radiance calibration)
- Update inversion quality assurance criteria



Version 3 database release expected in mid-2015

### **AERONET** Data Acquisition Methods

| Method                               | Current                                                                                                     | Planned                                                                                                                                       |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Download Tool                        | V2 AOD and Inversions by Site                                                                               | V3 AOD and Inversions by site                                                                                                                 |
| Download All Sites<br>and All Points | V2 L2.0 AOD<br>V2 L1.5 & L2.0 Inversions<br>(single file generated weekly)                                  | V3 L1.5V & Level L2.0 AOD<br>V3 L1.5, L1.5V & L2.0 Inversions<br>(Level 1.5V generated daily,<br>others weekly)                               |
| Web Service                          | V2 AOD and Inversions (all levels)<br>One site<br>Define start date & end date<br>(e.g., print_web_data_v2) | V3 AOD and Inversions (all levels)<br>Multiple sites<br>Define date/time periods<br>Set satellite overpass time<br>ISO8601 date format option |
| Special Requests                     | Contact Ilya or Dave for specific data transfer or data product                                             | Contact Ilya or Dave for non-<br>standard transfer or data<br>products<br>*Most requests should be<br>fulfilled by Web Service                |

# Summary

- Version 3 algorithm development
  - Completion and first results: Winter 2014
  - Final integration, processing, evaluation: Early 2015
  - V3 database release: Expected in mid-2015
- New V3 Level 1.5V product will provide near real time AOD data at the highest quality possible for satellite, forecast model, and data assimilation applications
- Data dissemination web service will accommodate data download needs and most special requests