

MET and Aerosols

<u>Subtitle:</u> What would I do if it were me?

6th ICAP Workshop Oct 21-24, 2014 - Boulder, Colorado Tara Jensen

> MET Team: John Halley Gotway, Randy Bullock, Tressa Fowler, Tatiana Burek, Julie Prestopnik, Nancy Rehak, Kathryn Newman and Barb Brown

Support for MET is provided by AFWA, NOAA and NCAR through the Developmental Testbed Center (DTC)

Verification group vision

Provide verification expertise and software for NWP community to facilitate intelligent and defensible R2O decisions. Reason to use MET: reproducible results across multiple institutions

MET Package

- MET is community code supported by DTC that is free to download (registration required)
 - Approximately 2500 registered users
 - 124 countries
 - Universities, Government, Private Companies, Non-Profits
- Download MET release and compile locally.
 - Register and download: <u>www.dtcenter.org/met/users</u>
- Language: Primarily in C++ with calls to some Fortran libraries
- Supported Platforms and Compilers:
 - Linux with GNU compilers
 - Linux with Portland Group (PGI) compilers
 - Linux with Intel compilers
- In-person tutorials given yearly Next Tutorial Feb 2-3, 2015 after WRF Tutorial

Things to keep in mind

- Things that MET does well:
 - Handles Grib1, Grib2, MET-Specific NetCDF, CF-compliant NetCDF, ascii
 - Calculates traditional and cutting edge statistics for gridded datasets against either point data or gridded data
 - Reproduces and extends
 - Basic NCEP FVS verification package
 - NHC Verification Package
- Things that MET is still working on:
 - Handling HDF files (support needed)
 - Handling 2 "point" fields
 - Providing pre-compiled binaries
 - Verification against aircraft data

MET v5.0 Overview

	Data	MFT Tool					
	Data						
	Gridded Forecasts Gridded Observations (Grib1 / Grid2 / NetCDF with grid information included and next release GSI diagnostic file)	Grid Stat (traditional or neighborhood) Ensemble Stat Wavelet Stat MODE Series Analysis Stat Analysis					
MET has finally	Gridded Forecasts Point Observations (Ascii in 11 column format; PrepBufr)	Point Stat Ensemble Stat Stat Analysis					
broken the requirement for gridded data paradigm!!	Point Forecasts Point Observations (ATCF format)	TC Pairs TC Stat					

Categorical and Continuous Statistics

Continuous	Categorical / Multi-Categorical				
Forecast Mean	Total number of matched pairs				
Forecast Standard Deviation	Contingency Table Counts				
Observation Mean	Forecast rate				
Observation Standard Deviation	Hit rate				
Pearson Correlation Coefficient (aka Correlation)	Observation rate				
Spearman's Rank Correlation	Base rate				
Kendall's Tau statistic	Forecast mean / h \TATICTICC				
Number of ranks used in Kendall's tau	Accuracy				
Number of tied forecasts in Kendall's tau	Frequency Bias				
Number of tied observations in Kendall's tau	Probability of Detection - Yes				
Mean error	Probability of Detection - No				
Standard Deviation of error	Probability of False Detection (aka False Alarm				
10 th , 25 th , 50 th , 75 th , 90 th Percentile of Error	Rate)				
Inner Quartile Range	False Alarm Ratio				
Multiplicative Bias (aka Bias)	Critical Success Score (aka Threat Score)				
Mean Absolute Error	Gilbert Skill Score (aka Equitable Threat Score)				
Mean Square Error	Bias-Adjusted Gilbert Skill Score				
Bias-corrected Mean Square Error	Odds Ratio				
Root Mean Square Error	Log-Odds Ratio				
Mean Absolute Deviation	Odds-Ratio Skill Score				
	Hanssen-Kuipers Discriminant				
	Heidke Skill Score				
7 1 Chatichies	Extreme Dependency Score				
	Symmetric Extreme Dependency Score				
	Extreme Dependency Index				

Symmetric Extreme Dependency Index

Extreme Dependency Index

Neighborhood and Ensemble/Probability Statistics

	Neighborhood	Ensemble/Probability	
RUN: GRID-STAT	Neighborhood Contingency Table Statistics (see previous slide) Fractions Brier Score Fraction Skill Score Asymptotic Fractions Skill Score Uniform Fractions Skill Score Forecast Event Frequency Observed Event Frequency	Ensemble Mean and Std Dev fields Ensemble Mean <u>+</u> 1 Std Dev fields Ensemble Min and Max fields Ensemble Range field Ensemble Valid Data Count field Ensemble Relative Frequency (probability) Ranked Histograms (if Obs Field Provided) PIT Historgram Ensemble Spread-Skill (if Obs Field Provided) Neighborhood Contingency Table Statistics (see previous slide) Brier Score	RUN: ENSEMBLE STAT
	Wavelet	Reliability Resolution Uncertainty	RUN:
RUN: WAVELET- STAT	Mean squared error for each scale Intensity skill score Forecast Energy Squared Observed Energy Squared Base Rate (not scale dependent) Frequency Bias	Area Under ROC Calibration Refinement Likelihood Base Rate Probailiby Integral Transform (PIT) Reliability points ROC Curve Points	POINT-STAT OR GRID-STAT

Analysis and Synthesis of Statistics

- Stat-Analysis
- MODE Analysis
- Series Analysis
- MET-TC TC-Stat
- METViewer Database and Display package

(currently available through DTC - will work with people to upload some of their data so you can figure out if it's a useful tool you want to adopt)

METViewer Design

METViewer 1.0 Release *Regression Testing Implemented*

Reasons to use METViewer

- Easy way to analyze data
- Allows you to aggregate either by finding the mean or median of errors - or - using partial sums (for continuous variables) and contingency tables (for categorical data)
- Pairwise differencing
- Confidence intervals
- Plot formatting on the fly
- Batch engine to produce multitudes of plots
- We now have regression testing for METViewer

ICAP Examples

Think both inside and outside the box

YOU

AEROSOL RADIATIVE IMPACT ON NWP: sources comparisons

Aerosol (ie dust) sources are much larger with prognostic aerosol direct effect

I would use:

Grid-Stat to calculate categorical statistics from contingency statistics

MODE to better understand the "features"

Samuel Remy

Comparing objects can tell you things about your forecast like . . .

This:	Instead of this:
30% Too Big (area ratio=1.3)	POD = 0.35
Shifted west 1 km (centroid distance = 1km)	FAR = 0.7235
Rotated 15° (angle diff = 15%)	CSI = 0.1587
Peak AOD 50% too low (diff in 90 th percentile of intensities = 0.5)	

Verifying with objects doesn't always make sense . . .

NASA/MODIS - May 9, 2011 - Ship-waveshape wave clouds induced by Juan Fernandez Islands, off Chile

AEROSOL RADIATIVE IMPACT ON NWP: sources comparisons

Aerosol (ie dust) sources are much larger with prognostic aerosol direct effect

I would use:

Grid-Stat to calculate categorical statistics from contingency statistics

MODE to better understand the "features"

Samuel Remy

Impact of Core & Microphysics

90% Intensity shows overforecast of precipitation for ARW-Fer and ARW-MY members especially at higher thresholds which means when it rains it pours in these members

Different

Microphysics

nmm-fer-gep4

nmm_fer_deo

MODE has been used to evaluate

- Precipitation
 - Standard Accumulation Intervals
 - Probability Fields
- Reflectivity
 - Composite
 - Radar Echo Top
- Precipitable Water / IWV

- Cloud free areas
- A-Train 2-D vertical curtain of satellite fields
- World-Wide Merged Cloud Analysis (WWMCA)
- Mid-latitude Jets
- Confluence and Difluence derived from Wind Fields
- High and Low pressures

Slide Courtesy of Angela Benedetti

AEROSOL RADIATIVE IMPACT ON NWP: 10m wind comparisons

Tuesday 17 April 2012 00UTC MACC Forecast t+021 VT: Tuesday 17 April 2012 21 UCCLIM direct effect Tuesday 17 April 2012 00UTC Mass. Forecast t+021 VT: Tuesday 17 April 2012 21 UTC Wind speed used for dust aer sol projuction (m/s) **PRO direct effect**

I would use:

Grid-Stat to calculate continuous statistics and categorical statistics from contingency statistics

MODE to better understand the "features"

- Older N320 trial
 250 hPa winds > 60 m/s at forecast lead time of t+96h from the 12Z initialisation compared to EC analyses
- Differences in the size of forecast and analysed objects is not overshadowed by growth of synoptic forecast error.

Example of MODE

© Crown copyright Met Office

Forecast Objects with Observation Outlines

Observation Objects with Forecast Outlines

- Do not look at absolute min/max values in objects. Use the 10th or 90th percentile as a more reliable estimate of how the intensity distribution has shifted/changed.
- Lows are deeper, highs and jets are stronger → sharper gradients and a more active energetic model.
- Differences in the 00Z and 12Z analyses.

Slide courtesy of Marion Mittermaier The Met Office - August 2014

© Crown copyright Met Office

Slide Courtesy of Angela Benedetti

AEROSOL RADIATIVE IMPACT ON NWP: Source and 10m wind comparisons

> You could also use MODE to compare the two fields by thresholding

- Source field with whatever is meaningful in that field and
- 2) Different winds thresholds to identify what it takes to forcing dust production in a give region

Slide Courtesy of Peter Colarco

MERRAero: Lidar Simulation

Evaluation of MERRAero aerosol typing with the CALIOP Vertical Feature Mask

ICAP 6th Working Group Meeting, Boulder, CO, October 21 - 24, 2014

CloudSat/NWP Comparison: Object Based: Reflectivity

CloudSat/NWP Comparison: MODE Objects

MODE for Different Probabilities – May 11, 2013 (DTC SREF tests)

NWS PoP - Percent chance that rain will occur at any given point in the area.

Prob >75% of 2.54mm in 3hr

Applying spatial methods to ensembles

As probabilities: Areas do not have "shape" of precipitation areas; may "spread" the area

As mean:

Area is not equivalent to any of the underlying ensemble members

As an ensemble of attributes:

May have many interesting features

2011-2012 HMT Season - HMT Ensemble for A06 >= 25.4mm

Example May 11, 2013

DTC SREF Tests – ARW Members

Spread increases With Time

Slide Courtesy of Angela Benedetti

PM VERIFICATION Miha Razinger

I would use:

Point-Stat with probably bilinear mean interpolation to match forecast with obs

Stat-analysis to aggregate statistics over either:

- Sites
- Entire set of stations
- Regional masking regions

Normalized Mean Bias =

ass 1 Joly-Peuch classification= background stations

Period: 20140301-20140520

Confidence Intervals and Interpolation in MET

- Normal Approximation CI
 - Calculated for all statistics for which this is appropriate
- Bootstrapped CI
 - Can be turned on in config file
 - Number of repetitions are user defined

Interpolation for Point Data

Nearest Neighbor, Unweighted Mean, Distance Weighted Mean, Bilinear Interpolation

Performance Diagram for Categorical Statistics

Performance Diagram for Events

Allows user to assess skill using multiple metrics & stratify by season, cloud regime, event definition, etc...

Left: Probability of Detection Bottom: 1-False Alarm Ratio Right: Frequency Bias Curved: Critical Success Index

Made using R-statistics

Taylor Diagram for Continuous Statistics

Made using R-statistics

Slide Courtesy of Angela Benedetti

IMPACT OF AEROSOL DIRECT EFFECT ON TC TRACK

MET-TC components

- Produces pair statistics on independent model input or user-specified consensus forecasts and "interpolated" forecasts (similar to those discussed in JOHN KNAFF's TALK)
- Matches forecast with reference TC dataset (most commonly Best Track Analysis)
- Pair generation can be subset based on user-defined filtering criteria
- ASCII pair output allows for new or additional analyses to be completed without performing full verification process

- Provides summary statistics and filtering jobs on TCST output
- ✓Filter job
 - Based on Thresholding
 - Flexible definition of "Rapid Intensification" and "Rapid Weakening" events for diagnostic studies
- ✓ Summary job:
 - Produces summary statistics on specific column of interest

An easy case

Slide courtesy of Jeff Reid

Good News: Cape Verde

I would use:

- My own code to write AOT out in ATCF format putting the AOT values in the MaxWind columns
- MET TC TC-Stat to identify the event
- Calculate Categorical Statistics

Graphics tools examples

R-Statistics scripts available to plot

VIIRS Aerosol Cal/Val

44 of 22

If I wanted a plot like this, I would use:

- Point-stat to calculate the statistic
- Stat-analysis "-by_case" option to "aggregate" the statistic through time for each point
- NCL to plot results

Hyer AMS 2012 SatMOC 6.2

24 January 2012

Geographic Representation of Scores (Stat-Analysis "by-case" option)

Dew Point Temperature Bias by Station ID Config=AFWAOC_WRFv3.5 Season=WINTER Init=00UTC Fcst Hr=42h

 Accumulates statistics separately for each grid location over a series

- Time
- Height
- Other series
- Accumulate over
 - Stations
 - Grids

Geographic Representation of Scores (Series-Analysis tool for gridded data)

Soil Temperature (0-10 cm) - pairwise differences between two model configs

Developmental Testbed Center

Results from DTC Mesoscale Modeling Task

VIIRS Aerosol Cal/Val

Currently, I would use:

- My own code to right out something called "partial sums" for many cases (not less than 30)
- METViewer (or R-statistics) to calculate the pairwise differences for whatever statistics I'm interested in and plot using bootstrapped confidence intervals
- METViewer (or R-statistics) to plot boxplots to examine distribution of statistics

Eventually, I hope to sometime use:

- My own code to write a generic matched pair file
- Stat-Analysis and calculate statistics directly from matched pairs then calculate the pairwise difference

Paired Tests

Valid Time	Fcst A	Fcst B	Fcst A – Fcst B
20140110 11:00	4	_ 2	= ²
20140110 12:00	1	_ 1	= 0
20140110 13:00	2	0	= 2
20140110 14:00	5	- -1	= 6
20140110 15:00	3	-2	= ⁵
	3	0	3
	↑ Mean Pairwise Error Difference		

Paired test for model error shows if the differences in model performance are statistically significant through examination of confidence intervals (CIs)

Confidence Intervals and Interpolation in MET

- Normal Approximation CI
 - Calculated for all statistics for which this is appropriate
- Bootstrapped CI
 - Can be turned on in config file
 - Number of repetitions are user defined

Interpolation for Point Data Nearest Neighbor, Unweighted Mean, Distance

Weighted Mean, Bilinear Interpolation

Things you should always do

- Use many cases (minimum 30)
- Use confidence intervals to help determine statistical significance especially when sample size is small
- Look beyond RMSE, MAE, Correlation
- Try to use synthesis tools to look at more than one statistic (i.e. Taylor Diagram, Performance Diagram, Scorecards, etc...)

Upper Air SS/PS (

SS (light shading) and PS (dark shading) differences for the annual aggregation of upper air temperature and dew point temperature *BCRMSE* and *bias*

		pper Air	Annual			Summer				Winter				
	Ten	nperature	f12	f24	f36	f48	f12	f24	f36	f48	f12	f24	f36	f48
		850	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG		RRTMG	RRTMG	RRTMG	RRTMG	RRTMG
		700	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG
		500		RRTMG	RRTMG	RRTMG						RRTMG	RRTMG	RRTMG
	MSE	400	RRTMG	RRTMG	RRTMG	RRTMG					RRTMG	RRTMG	RRTMG	RRTMG
	BCR	300	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG			RRTMG	RRTMG	RRTMG	RRTMG
		200			AFWA									
		150						AFWA	AFWA	AFWA				
		100	RRTMG		AFWA						RRTMG			
		850		RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG		RRTMG	RRTMG	RRTMG
		700		RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG		RRTMG	RRTMG	RRTMG
		500		AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA			RRTMG	RRTMG
	s	400			AFWA	AFWA	RRTMG	RRTMG			AFWA	AFWA	AFWA	AFWA
	Bia	300			RRTMG		RRTMG	RRTMG	RRTMG	RRTMG	AFWA	AFWA	AFWA	AFWA
		200		RRTMG	RRTMG	RRTMG					RRTMG	RRTMG	RRTMG	RRTMG
		150	AFWA	AFWA	RRTMG	RRTMG	AFWA	AFWA	AFWA	AFWA				
		100	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA				
	Upp	er Air Dew	Annual			Summer				Winter				
	Ter	Point mperature	f12	f24	f36	f48	f12	f24	f36	f48	f12	f24	f36	f48
	SE	850	RRTMG	RRTMG	RRTMG	RRTMG			RRTMG	RRTMG	RRTMG		RRTMG	
	RM	700	RRTMG							//	RRTMG	RRTMG		
	BC	500		/// ///	/// .	/// / ///		/// / ///	/// ///	RRTMG	/// ///	/// / ///		/// ///
		850	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	RRTMG	/// ///	AFWA	AFWA	AFWA
Mesoscale	Bias	70 <mark>0</mark>	AFWA	AFWA	AFWA	AFWA	RRTMG	RRTMG	RRTMG	RRTMG	AFWA	AFWA	AFWA	AFWA
Modeling Task		500	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA	AFWA

Statistical Significance (light shading) Differences pass the test •

Practical Significance (dark shading)

Which SS differences are greater than the observation uncertainty

Developmental Testbed Center

Thank Yous and Further Information

DTC would like to thank you for your interest and the assistance of all of our collaborators...

JNT: http://www.ral.ucar.edu/jnt DTC: http://www.dtcenter.org

MET: http://www.dtcenter.org/met/users

Email: jensen@ucar.edu met-help@ucar.edu

Support for the Developmental Testbed Center (DTC),

is provided by NOAA, AFWA NCAR and NSF

