EnKF developments and other things

NICK SCHUTGENS UNIVERSITY OF OXFORD

EnKF:

Eiji Oikawa

Makiko Nakata

Terry Nakajima

Enza di Tomaso Oriol Jorba Other things: Ed Gryspeerdt Natalie Weigum Svetlana Tsyro Michael Schulz Philip Stier

Projects

GOSAT, GCOM-C, SALSA

• Better AOT, DARF, PM25

- Through better mixing ratios
- Temp. res.: ~ 3 hr
- MIROC or NICAM-SPRINTARS
 - Mass scheme
- Ensemble Kalman filter

• Better CCN (& IARF)

GASSP

- Through better model parameters
- Temp. res.: ~ 1 mth
- HadGEM-UKCA (ECHAM-HAM)
 - Mass & numbers scheme
- Emulators & history matching

GOSAT, SALSA

Support for GOSAT CO2 retrieval

Currently running at NIES MIROC-SPRINTARS

Air pollution forecasts (SALSA) Dai et al. Atmos. Environ. 2013 Dai et al. Environ. Poll. 2014

• NICAM-SPRINTARS

Emission perturbations

Model prediction error covariance

'Propagating' the observation information in the grid

vs model

Estimating mixing ratios

Emissions

- 1 day forecast
- All observations during day assimilated
- New forecast starts where old forecast ended

$$\mathbf{X}_{a} = \mathbf{X}_{f} + \mathbf{P}_{a}\mathbf{H}^{T}\mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}_{f})$$

Kalman smoother

Kalman filter

Schutgens et al. *ACP* 2010a,b

Analysis spread / free spread

June 2005, assimilation of AERONET AOT & AE

The estimated error in AOT (ensemble spread) evolves naturally, i.e. according to the physics of the model and the information content of the observations.

Estimating emissions

Mixing ratios

Emissions

- 1 day forecast
- All observations during day assimilated
- New forecast starts where old forecast ended

- 6 day forecast
- All observations during last day assimilated
- New forecast starts 1 day after old forecast *started*

Kalman smoother

Kalman filter

Estimating emissions

Standard emissions

Standard emissions: dust flux [kg/m²s]

Estimating emissions from MODIS Terra over ocean and AERONET

Difference of newly estimated emissions (April 2009)

Evaluation of new emissions

Emission estimation using Terra AOT over ocean and AERONET AOT & AE

Evaluation using Aqua AOT:

		bias	slope	corr.
land	std	-0.045	0.31	0.51
	new	0.008	0.8	0.57
ocean	std	-0.04	0.34	0.50
	new	0.005	0.79	0.64

Schutgens et al. *Rem. Sens.* 2012

CALIOP observations

- Attenuated backscatter is assimilated
- Night-time obs only
- dust: randomly oriented spheroids
- Sensor does not often probe boundary layer
- Swath is very narrow

so global impact small:

Canberra

Flow uncertainty

MIROC is nudged to reanalysis meteorology. How accurate is this reanalysis?

Here we compare one year of NCEP and JMA reanalysis:

[m/s]	Mean	Stddev
Δ zonal windspeed	0.0	3.5
Δmeridional windspeed	0.0	3.2

Perturb reanalysis meteorology with spatiotemporally correlated noise:

Impact on global AOT ensemble spread:

MIROC5-SPRINTARS

- Similar to SPRINTARS v3.84 (official version)
- Boundary layer very different
- Nudging to perturbed reanalysis
- Emission perturbations using spatially correlated noise
- More perturbed emissions (e.g. DMS emissions)

Std error	standard	assimilation
All AERONET	0.11	0.10
Moderate AERONET	0.12	0.09
Best AERONET	0.07	0.05

Linear slope	standard	assimilation
All AERONET	0.055	0.64
Moderate AERONET	0.45	0.71
Best AERONET	0.49	0.76

Year long experiment

One year (2009) experiment where AERONET AOT & AE, MODIS AOT and CALIOP backscatter were assimilated.

Ensemble size: 24 members; assimilation window: 1 day (observations every 6 hours).

Model vs MODIS Aqua & Terra

Model vs AERONET

Model vs Maritime Aerosol Network (ship-based) observations

Model - MODIS

Analysis - MODIS

And other things: Empirical correction of MODIS AOT & AE over ocean

MODIS Coll. 5 L2 over ocean

Schutgens et al. AMT 2013

And more other things: Community Intercomparison Suite

Plotting original data

AERONET station data

UNIVERSITY OF

Satellite imager data

Satellite active profiler data

Model data

Flight campaign data

Spatio-temporal collocation

- Model gives global output every 3 hours for a full year
- Observations are day-time measurements, every 15 min for ~20 years

A grand total of 6 commands are required!

And now for something different: Project GASSP

GASSP

Collaboration: Leeds, Oxford & Manchester U. PI: Ken Carslaw.

1. Large collection of in-situ data (in particular flight campaigns) are converted to the same data format (NetCDF)

Perfect models & perfect observations

Aerosol extinction at an altitude of ~ 2km

Toy model for representation errors

- Estimates of representation errors
- Sensitivity of those errors to
 - o Region
 - Sampling strategies
 - Grid-box sizes

0 ...

Implications for

• Surface measurements

• Flight campaigns

Suggestions for best practices

Summary

• EnKF developments

- Emission and meteorology perturbations
- CALIOP backscatter
- Extensive tuning
- o Multiple sensor DA
- Community Intercomparison Suite
- GASSP
 - Large collection of in-situ data
 - o Structural vs parametric errors
- Study of representation errors

