

GRASP Algorithm:

Retrieval of the detailed properties

Oleg Dubovik (University of Lille-1, CNRS, France)

<u>GRASP team</u>: P. Litvinov¹,T. Lapyonok¹, F. Ducos¹, D. Fuertes¹, X. Huang¹, A. Lopatin¹, B.Torres¹, Y. Derimian¹, L. Li¹, C. Chen¹ M. Aspetsberger², C. Federspiel², etc. *1 - University of Lille-1, CNRS, France* 2- Catalysts GmbH, High Performance Computing, Linz, Austria

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

GRASP: Generalized Retrieval of Aerosol and Surface Properties

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

AERONET retrievals are driven by 31 variables :

Smoke

dV/Inr - size distribution (22 values); n(λ) and k(λ) - ref. index (4 +4 values) C_{spher} (%) - spherical fraction (1 value)

Desert Dust

Single - Pixel Retrieval:

RT calculation on fly !!!

Multi-term LSM statistically optimized Solution (Dubovik and King 2000, Dubovik 2004):

$$\boldsymbol{a}_{j} = \left(\boldsymbol{\mathsf{F}}_{j}^{T} \boldsymbol{\mathsf{W}}_{j}^{-1} \boldsymbol{\mathsf{F}}_{j} + \gamma_{j} \boldsymbol{\Omega}_{j} \right)^{-1} \left(\boldsymbol{\mathsf{F}}_{j}^{T} \boldsymbol{\mathsf{W}}_{j}^{-1} \boldsymbol{\mathit{f}}_{j}^{*} \right)$$

, where
$$W_j = \mathbf{S}_j^T \mathbf{S}_j; \ \mathbf{W}_j = \frac{1}{e_f^2} \mathbf{C}_f; \ g_j = \frac{e_f^2}{e_a^2}$$

The concept of multi-pixel retrieval

X-Variability Constraints

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

Multi - Pixel Retrieval:

PARASOL: the space–borne instrument most suitable for enhanced aerosol/surface

characterization

PARASOL daily coverage image,

March 3, 2013

<u>life time</u>: dec: 2013 2004 - 2013

INTENSITY

for aerosol (0.44, 0.49, 0.56, 0.67, 0.865, 1.02 μm) for gas absorption: (0.763, 0.765, 0.910 μm) **POLARIZATION (Q, U)**: (0.49, 0.67, 0.865 μm) Swath: about 1600 km cross-track Global coverage: every 2 days 1 pixel spatial resolution: 5.3km × 6.2km

Viewing directions: $16 \cdot (80^{\circ} - 180^{\circ})$

Test with synthetic measurements

Aerosol Optical Thickness

PARASOL over Banizoumbou in January, February 2008

Test with synthetic measurements

Single Scattering Albedo

PARASOL over Banizoumbou in January, February 2008

Processed at ICARE

AOT(0.56) - loading

SSA(0.56) - absorption

NO ASSUMPTIONS on aerosol and surface

EXAMPLES of PARASOL/GRASP retrievals - 2008

All calculation on the fly

INTENSITY (I) for aerosol: (0.44, 0.49, 0.56, 0.67, 0.865, 1.02 µm) for gas absorption): (0.763, 0.765, 0.910 µm) POLARIZATION (Q. U): (0.49, 0.67, Viewing)

March 3, 2013

Swath: about 1600 km cross-track Global coverage: every 2 days 1 pixel spatial resolution: 5.3km × 6.2km Viewing directions: 16: (80° – 180°)

suitable for enhanced aerosol/surface characterization PARASOL daily coverage image.

PARASOL: the space-borne instrument most

EXAMPLES of PARASOL/GRASP retrievals - 2008

NO ASSUMPTIONS on aerosol and surface All calculation on the fly

Albego(0.56) - surface

NDVI

Processed at ICARE

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

1 year of PARASOL data compared with AERONET over Africa at 6 sites:

Angstrom Exponent

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

1 year of PARASOL data compared with AERONET Ilorin – complex mixture of dust and biomass burning

Comparison with other aerosol products

1.0

0.8

0.6

0.4

0.2

0.0

PARASOL /fine mode operational

1ÓE

Ď

20E

3ÔE

4ÔE

5ÓE

20₩

1 Ó W

1.0

0.8

0.6

0.4

0.2

0.0

MODIS /Dark Target

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

Retrieved seasonal variability of aerosol AOD - 2008

⁷th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

Aerosol transport tracking with GRASP

Biomass burning plume evolution

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

Aerosol types identification with GRASP (AOD, SSA, AE)

Is GRASP is fast enough for operational processing?

Accurate, 3 sec per pixel, accelerated is ~ 0.3 or less per pixel

GRASP "accelerated" vs. GRASP "accurate"

AOD (440 nm): June – August, 2008

AOD (560 nm): June – August, 2008

AOD-fine (440 nm): June – August, 2008

AOD-coarse (1020nm): June – August, 2008 PARASOL/GRASP

Angstrom Exponent: June – August, 2008

SSA (560 nm): June – August, 2008

AAOD (560 nm): June – August, 2008

Residual : June – August, 2008

Characterizes error

No assumptions!!!

Residual Seasonal Average Jun-Aug 2008 -180° -150° -120° -90° -30° 180° -60° 0° 30° 60° 90° 120° 150° 90° 90° 60° 60° 30° 30° 0 ° 0° -30° -30° -60 ° -60° -90° -90° -180° -150° -120° 90° 180° -90° -30° ٥° 30° 60° 120° 150° -60°

AOD (440 nm): June – August, 2008

July 11, 2008

Kilauea volcano ash plume (Hawaii, Halemaumau Crater, 2008)

July, 2008

Kilauea volcano ash plume (Hawaii, Halemaumau Crater, 2008)

GRASP retrieval: Kilauea volcano (Hawaii, Halemaumau Crater, June-August, 2008)

AOD, 443 nm

Fine mode AOD, 443 nm

Aerosol Mean Height: June – August, 2008

PARASOL/GRASP

No assumptions!!!

VerticalProfileHeight Seasonal Average Jun-Aug 2008

Sensitity tests for retrieving aerosol MEAN HEIGHT

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

Conclusion of sensitivity tests:

- ✓ PARASOL data have solid sensitivity to aerosol height;
- Sensitivity is higher to fine mode aerosol and less to large non-spherical dust;
- ✓ There is dependence on assumption about atmospheric aerosol vertical profile.

DHR(870): June – August, 2008

No assumptions!!!

SurfaceAlbedo865 Seasonal Average Jun-Aug 2008

BPDF_Maignan_Breon_565 Seasonal Average Jun-Aug 2008

The same NDVI and **DHR** but different **Polarized reflectance**

BPDF Maignan Breon 865 Seasonal Average Jun-Aug 2008

Polarized reflectance provides new information about surface type!

MERIS: - radiances at seven wavelengths: (413, 443, 490, 510, 560, 665, and 870 nm); - single view X-Variability Constraints **Complex Refractive Index at AEROSOL: Particle Size Distribution:** λ = 0.44; 0.67; 0.87; 1.02 µm 0.05 μm ≤ R (22 bins) ≤ 15 μm - size distribution (5 or more bins); Real Part 1.55 - spectral index of refraction (7 λ); 1.50 0.01 - sphericity; 1.45 1.40 1.35 0.00 0.67 0.87 Radius (µm) Wavelength (µm) BRDF SRFACE: - BRDF (3 spectrally dependent parameters);

41 = (5 (SD) + 14 (ref. ind.) + 1 (nonsp.) + 21 (BRDF))

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

(t1; x; y)

Imaginary Part

0.67 0.87

Wavelength (µm)

The concept MERIS/GRASP retrieval works good with synthetic measurements

AOD

SS

Smoke

Dust

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

GRASP: Generalized Retrieval of Aerosol and Surface Properties

Dubovik et al. 2011, 2014

Retrieves both: surface (over land) and detailed aerosol properties

First results: surface

Excellent agreement!

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

GRASP/ MERIS – land/water

(January - March 2008, 10 km resolution)

ESA CAWA project

GRASP/ MERIS retrieval – land/water

(average January - March 2008, 10 km resolution)

Real or artifacts ??? AOT(440) meris, AOT_443 -- 37.06 N, 15.23 E, composite 1.0 0.9 42°N 0.8 0.7 36°N 0.6 443 Θ 0.5 AOT 0.4 30°N 0.3 0.2 0.1 Cairo 24°N 0.0 6°W 0° 6°E 12°E 18°E 24°E 30°E 36°E

GRASP/ MERIS

(January – March, 2008, 10 km resolution)

<u>GRASP</u> concept: retrieval of aerosol and surface simultaneously under minimum assumptions

- ✓ GRASP/PARASOL retrieval are promising for diverse products:
- Aerosol AOD (even over bright surfaces) and size distributions;
- Aerosol absorption, refractive index etc.,
- Aerosol height; non-sphericity (???);
- BRDR + BPRF
- \checkmark First results are very promising for several satellte sensors :
 - PARASOL, MERIS, GOCI (geostationary);
- Promising for synergy retrievals etc. ;
 etc.

Sphericity fraction : June – August, 2008

Retrieval of Non-Sphericity and Aerosol Layer Height from Synthetic Measurements

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

The concept of multi-pixel retrieval

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

Aerosol sources identification with GRASP (AOD, SSA, AE)

PARASOL/GRASP AOD (565 nm)

MODIS/AQUA AOD (550 nm)

GRASP/MERIS: AOD(560 nm), January – March 2008

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

GRASP/MERIS: AOD(560 nm), January - March 2008

<u>Retrieves both</u>: surface (over land) and detailed aerosol properties

No assumptions !!!

ESA CAWA project

First results: Surface reflectance, 35 km resolution

7th ICAP Meeting, Barcelona, Spain, June 16 - 19, 2015

AOD retrieval in Ocean/Land zones

West coast of Africa (23N,-15W)

June 11, 2008

August 14, 2008

Aerosol Optical Depth for 443 nm

Aerosol Optical Depth for 443 nm

European Geosciences Union General Assembly 2015, Vienna | Austria | 12 – 17 April 2015

What is done

- Reduced number of Gaussian quadrature in forward RT and Jacobean matrix calculations.
 Used initially: 10(7)
 To speed up: 7(3)
- Reduced number of Fourier expansion term.
 Used initially: 10 To speed up: 5
- Reduced accuracy of RT-calculation:
 Initial absolute accur.: 0.0001 To speed up: 0.001
- Reduced number of bins in Size distribution.
 Used initially: 9 To speed up: 5
- Reduced number of iterations in inversion.
 Used initially: 12 To speed up: 6