POLAR MULTI-SENSOR AEROSOL PROPERTIES FROM METOP A & B

Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang

Overview

- PMAp: Polar Multi-sensor Aerosol product: Product overview
- Instruments & collocation
- Retrieval methods: Operational PMAp release 1.0.10
- Validations and verifications
 - AERONET
 - ECHAM model
- PMAp error calculation
- PMAp release 2 for pixels over land
 - Retrieval methods
 - Results

Overview

PMAp: Polar Multi-sensor Aerosol product developed at EUMETSAT

- > AOD over ocean, aerosol classification (volcanic ash)
- Delivered as a GOME-2 product
- Distributed by EUMETCast in netcdf4
- Pre-operational since Q2/2014
- Fully operational status: since October 2014
- > Major update / improvement since January 20th 2015

PMAp Release 2: Extension to pixels over land, GOME UV index, IASI ash index

- Preliminary results for AOD over land
- Q4/2015: Distribution of the operational product to users

PMAp aerosol events: Volcanic ash plume June 2015

Current Capabilities - EUMETSAT Polar System

METOP instrument level-1 data used by PMAp

Instru ment		Spatial resolution	Spectral range	comments
GOME-2	Main science channel	80 x 40 km	240nm -800nm, res. 0.25-0.5nm	AAI, low spatial resolution, not used
	Polarization Monitoring Device	10 x 40 km Metop-B 5 x 40 km Metop-A	311nm-803nm, 15 bands	AOD, aerosol type, AAI
AVHRR	-	1.08 x 1.08 km	580nm-12500nm, 5 bands	Clouds, scene heterogeneity, dust/ash
IASI	-	12km (circular)	3700–15500nm, resolution 0.5 cm ⁻¹	desert dust, volcanic ash aerosol heights
Auxiliary data	ECMWF wind speed (forecasting)	Temporal interpolation necessary	-	Required for retrievals over ocean
	surface albedo, Surface elevation	-	-	Required for retrievals over land

Target spatial resolution

Band-S						
No.	pix1	pixw.	wav1	wav2		
1	22	5	311.709	314.207		
2	30	4	316.762	318.720		
3	37	12	321.389	329.139		
4	50	6	330.622	334.443		
5	57	6	336.037	340.161		
6	84	17	360.703	377.873		
7	102	4	380.186	383.753		
8	117	19	399.581	428.585		
9	138	27	434.083	492.066		
10	165	18	494.780	548.756		
11	183	2	552.474	556.262		
12	187	11	568.070	612.869		
13	198	9	617.867	661.893		
14	218	4	744.112	768.269		
15	224	2	794.080	803.072		

- Radiances & stokes fraction
- better spatial resolution
- stokes fraction s = Q/I

PMAp: Very accurate co-location of AVHRR and IASI to the GOME-2 PMD pixel footprints

ICAP working group meeting 16 – 19 June 2015, Barcelona

AVHRR collocation:

an AVHRR pixel is collocated to a GOME-2 PMD pixel if it is inside the GOME-2 pixel

> Spatial aliasing due to read-out timing of detectors is taken into account!

IASI collocation:

a IASI pixel may span up to 6 GOME-2 PMD pixels. Which GOME-2 pixel should it be collocated to?

Collocation of AVHRR and GOME-2: slope and scatter

- Significant calibration error of AVHRR (slope, almost no offset).
- Scatter due to different shapes of footprints (+ contribution of convolution effects). Used for error calculation.
- Spatial aliasing can lead to differences in averaged radiances / cloud fractions for the different PMD bands.
- Work in progress: Online calibration of AVHRR CH 1, 4 and 5 and GOME PMD using GOME main channels & IASI.

Strategy for AVHRR / GOME-2 combination

- Avoid optimization using one fit over different satellite instruments
 - Problems for heterogeneous scenes (different footprints)
 - Problems due to different calibration errors
 - Problems due to different degradation effects (observed for AVHRR/GOME on METOP-A)
- Apply quantitative retrieval on the GOME-2 instrument
- Use AVHRR to
 - detect clear sky scenes based on VIS/IR thresholds
 - detect dust and ash events based on VIS/IR thresholds
 - retrieve cloud correction factors for GOME-2 based on the variation of the AVHRR radiances within the GOME-2 pixels

Three step retrieval:

Step1: Pre-classification by AVHRR

- Cloud detection and cloud corrections, distinguish clouds from dust/ash
- Aerosol type pre-classification (no dust, dust, ash, no classification)

Step2: Retrieval of a set of candidate AODs (one PMD band)

• based on a set of aerosol models from LUT provided by O. Hasekamp (O3MSAF), model selection dependent on step 1.

Chlorophyll fitted for clear sky pixels (otherwise a priori)

Step3: Selection of the best fit

 select the best result of step 2 using least-square minimization for all GOME PMD bands (+ stokes fractions dependent on condition)

PMAp AOD: Metop A (June+July 2013)

Correction of the calibration (AVHRR thermal bands)

- Cloud correction dependent on aerosol type:
 Inhomogeneities correction dependent on aerosol type:
 - The fine mode should give no signal at 1.6µm and 10µm. Inhomogeneities are clouds if weak coarse mode.
 - If an aerosol causes inhomogeneities at 10 µm, it should also cause inhomogeneities at 0.6 µm.

➤A pixel is defined as completely cloud free, if the average AVHRR reflectance is close to the clearsky AVHRR reflectance retrieved dependent on aerosol class.

PMAp: Comparison to ECHAM model: Global time series comparison Metop-A 06/2013

16 – 19 June 2015, Barcelona

EUMETSAT

ECHAM-PMAp comparison June 2013

0.4

0.2

0.0

-0.2

-0.4

provided by C.Poulsen, RAL

Blue= higher satellite values Red=lower satellite values

Operational monitoring of PMAp using AERONET

- Stations on islands and selected coastal stations
- Max temporal difference: 30min,
- Max spatial difference: 60km
- Continuous monitoring since January 2014

Comparisons to AERONET: Results Metop A

Comparisons to AERONET: Results Metop A & B

- All AERONET station with altitude < 500m
- Red = all PMAp values, blue = PMAp clear sky values
- R= 0.85-0.95 data selection sensitive, clear sky case better

PMAp error calculation

- PMAp does not use optimal estimation methods.
- A set of AOD is calculated using simplified inversion.
 - Example: variation of the chlorophyll pigment concentration
- A standard deviation of these AODs is calculated.
- PMAp calculates a randomized error
- Specific contributions discussed in this presentation:
 - Errors from AVHRR/GOME-2 collocations
 - Wrong selection of the aerosol type (microphysics)
 - Dependence of the surface reflectance on wind speed.

Error caused by wrong aerosol type selection

• Worst case scenarios: Error up to a factor of 2 possible (in practice smaller)

• Variablility of the surface reflectance with wind speed can be as large as the signal of an aerosol (AOD=0.3) :

$$\frac{R_{clear} (12 m / s) - R_{clear} (3 m / s)}{R_{aerosol} - R_{clear}}$$

- AOD retrieval will depend on a surface test comparing:
 - calculated clear-sky signal
 - calculated wind speed dependence
 - calculated aerosol signal

PMAp errors dependent on different parameters

16 - 19 June 2015, Barcelona

Looking forward to PMAp2: AOD retrieval algorithm Retrieval algorithm over land

Three step retrieval:

Step1: Pre-classification by AVHRR (w.i.p GOME UV and IASI)

- Cloud detections and cloud corrections, distinguish clouds from dust/ash
- Aerosol type pre-classification (volcanic ash, dust, biomass burning)
- Default aerosol model selection includes TIR measurements
- Results are inputs for the GOME-2 retrieval

Step2: Retrieval of a set of candidate AODs (one PMD band)

• based on a set of aerosol models from LUT provided by O. Hasekamp (O3MSAF), model selection dependent on step 1.

Step3: Selection of the best fit

 select the best result of step 2 using least-square minimization for all GOME PMD bands (+ stokes fractions dependent on condition)

PMAp over land: Surface albedo vs wavelength

black-sky (land) and minimum LER (sea) albedo for June at 775 nm

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00 black-sky (land) and minimum LER (sea) albedo for June at 442 nm

0,50

ICAP working group meeting 0,40 16 - 19 June 2015, Barcelona

black-sky (land) and minimum LER (sea) albedo for June at 620 nm

0.00 0.10 0.20 0.30 0.40 0,50 0,60 0,70 0.80 0.90 1.00 black-sky (land) and minimum LER (sea) albedo for June at 412 nm

MERIS/GOME-1, C. Popp et. al. 2011

0.90

PMAp over land: AOD calculation

- Interpolation of the AOD at PMD 7, 8 or 12 dep. on surface albedo
 - maximum albedo 0.10, prefer higher wavelength if albedo difference lower than 0.005
- Bands used to fit aerosol types dependent on surface albedo
 - reflectances for channels with albedo < 0.05, Stokes fraction if applicable

16 – 19 June 2015, Barcelona

AOD: PMAp Metop B (30/08/2013)

AOD: PMAp Metop A (30/08/2013)

AOD: PMAp Metop A & B combined (30/08/2013)

Conclusions

- A new aerosol product over ocean from METOP instruments (PMAp) is delivered to our users
 - GOME-2 product using a multi-sensor approach
 - Pre-Operational since Q2/2014
 - Fully validated operational status since 14th October 2014
- Operational monitoring of PMAp using AERONET & comparisons to the ECHAM model show convincing results
- Consistent results for the calculated retrieval error
- A new PMAp release providing AOD over land is in development
 - First results look promising
 - Start of pre-operations expected in Q4/2015

The PMAp product operational implementation Product features

Product features:

• Near real time 3 minutes granules, maximum 3 hours after sensing time

Available via EUMETCast in EPS native and netcdf4.

• Full orbit offline data. Available from the EUMETSAT archive

http://archive.eumetsat.int

• AOD, COD, volcanic ash flag

Start of dissemination: 29th April 2014

Documentation (user guide): <u>www.eumetsat.int</u> > Data > Technical documentation > Metop > PMAp

