

Aerosol Activities at Meteo-France: Modelling, Assimilation and Operational Forecasts

L. El Amraoui (1), B. Sič (1,2), M. Joly (1), N. Asencio (1),

et al.(1,2,...)

 (1) CNRM & Météo-France, Toulouse, France
 (2) CERFACS, Toulouse, France laaziz.elamraoui@meteo.fr

- Reflect, scatter and absorb radiation
- Influence visibility
- Influence climate
- Affect clouds and precipitation
- Supply minerals to ocean biosphere
- Active in the atmospheric chemistry
- Affect health

Importance of aerosols for Météo-France

3

- > Air Quality
 - Météo-France has a mission to produce operational forecasts for air quality for both gases and aerosol (prévair, Copernicus)
 - Aerosols have gret impact on air pollution as wellas human health
 - → Need for reliable Air Quality forecasts

Aviation safety

- Météo-France is one of the 9 VACC centres (Volcanic Ash Advisory Center) with a responsability over over Africa and the big part of Eurasia
- ➔ Need for a good representation and forecast of volcanic aerosols in the case of volcanic erruptions

MOCAGE (Modèle de Chimie Atmosphérique à Grand échelle

- CTM MOCAGE is a chemical transport model of Météo-France covers both troposphere and stratosphere with gases and aerosols:
 - 47 vertical levels in sigma-pressure hybrid coordinates from the ground up to 5 mbar (resolution from ~40m next to the surface till ~800m in the stratosphere)
 - Transport: semi-Lagrangian advection, Louis (1979) diffusion, Bechtold et al. (2001) convection
 - Meteorological forcing from ARPEGE or IFS analyses
 - Horizontal resolution:
 - Global: from 2°x2° to 0.5°x 0.5°
 - Regional: from 0.5°x 0.5° to 0.2°x 0.2°
 - Over France: 0.1°x 0.1° to 0.025°x 0.025°

METEO FRANCE

- 5 types of primary aerosols
 - Desert Dust
 - AEROCOM emission inventory
 - Dynamical emission (wind speed & surface type)
 - Sea salt
 - AEROCOM emission inventory
 - Dynamical emission
 - Black Carbon
 - AEROCOM emission inventory
 - GEIA emission inventory
 - ACCMIP emission inventory
 - Organic carbon
 - ACCMIP emission inventory
 - Volcanic Aerosols
 - Point sources depending on each volcano
- 6 bins for all types of aerosols

Species	desert dust	sea salt	black carbon	organic carbon	
size range [µm]	0.1 - 100	3·10 ⁻² - 20	10 ⁻³ - 10	5·10 ⁻³ - 10	

Contribution to ICAP

- Daily production since February 2016
- MOCAGE model available on the ICAP website since may 2016
- 4 days-forecast (17 time-slots from 00 to 96 with 6hr interval)
- Resolution: 2 degrees (regridded at 1 degree)
- Shortcomings of the current version:
 - Desert dust AOD are too low on average
 - Desert dust emissions are too strong for some events (e.g. over the Gobi desert)
 - Lack of AOD over the oceans (issue in the sea salt representation)

- A new version of the model MOCAGE will be put operational in September 2016 :
 - Resolution increase to 1°
 - Desert dusts emissions completely revised
 - New distribution of desert dusts into the model bins (Kok 2011)
 - Correction in the sea salt representation
 - Black & organic carbon inventories updated

• The new version (sept. 2016) is more consistent with ICAP ensemble.

DATA ASSIMILATION

→ The MOCAGE System is able to assimilate:

- Aerosol Optical Depth (AOD) measurements
- Lidar Signals
 → Backscatter Coefficient,
 → Ground

 → Extinction Coefficient,
 → Satellite

 → Normalized Backscatter signal)
 → Aircraft (up / down)

→ Methodology:

- Neither AOD nor lidar signals are the prognostic variables
- Total concentration (in 3D) as a control variable

→ Minimization and propagation of the increment are done in terms of the total aerosol concentration

Development of the needed operators: observation, tangent linear and adjoint to switch between the model space and the observation space during the assimilation

• Update of concentrations to all species/bins in the model After each assimilation window

Sič's Ph.D thesis (2014)

Positions of the stations

Assimilation of aerosols (AOD)

- Module of AOD assimilation is validated for:
 - Period of TRAQA (summer 2012)
 - And CHARMEX (summer 2013)
 - Volcanic plume from Eyjafjöll in 2010
- TRAQA
 - Balloon and aircraft instruments
 - Summer 2012.
- Assimilated observations
 - MODIS (Land, Ocean and Deep-Blue) superobservations
 - over Mediterranean basin
 - June 2012 July 2012
 - $0.2^{\circ}x0.2^{\circ}$

Comparison with independent AOD observations :

- Independent AOD observations:
 - SEVIRI (over sea)

• Statistics

	Direct model				Assimilated model			
	ρ	bias	rmse	st. dev.	ρ	bias	rmse	st. dev.
SEVIRI	0.69	0.14	0.25	0.20	0.87	0.08	0.16	0.14
AERONET	0.74	0.05	0.13	0.12	0.88	0.01	0.07	0.07

Comparison with independent aircraft measurements :

- PCASP/ATR in-situ measurements of aerosol concentration
- Elevated amount of aerosol due to an desert dust event over the Mediterranean basin
- The assimilated run simulated better the amplitude of the event

Comparison with independent balloon measurements (LOAC) :

The LOAC measurements

- Colocated with airplane measurements
- Profile shape conserved

Aerosols coming from different locations, where they were already assimilated in previous cycles, can improve the vertical profile

Std.Dev

- → Extinction Coefficient.
- → TRAQA-2012 (20-29 June)

Mean

Saharan Dust Outbreak over The MB

The vertical distribution of desert dust concentration (zonal mean)

- → CALIOP Assimilation Improves the Aerosol concentration
 - In terms of quantities
 - In terms of vertical distribution

MODIS

Longitude [°]

з

□ Applications regarding Aerosol assimilation :

- Assimilation of AOD:
 - ✓ Many wavelengths (~20) are implemented in MOCAGE for AOD assimilation
 - ✓ Many validation exercices are in going during TRAQA and ChARMEx field campaigns (article under review)
- Assimilation of lidar profiles
 - ✓ The assimilation system is able to assimilate any lidar profile with all the possible configurations
 - ✓ Great impact on the vertical aerosol structure (Extinction or aerosol concentration).

□ In the future...

- o Inclusion of data assimilation for ICAP contribution
- o Taken into account the secondary aerosols
 - ➔ Evaluation of the role of secondary aerosols to better improve the forecast of aerosols
- o Assimilation of AOD and lidar products jointly
- o Assimilation of many wavelengths at the same time (AOD, lidar profiles)

Thank you