

Recent progress of the operational dust prediction system in the Japan Meteorological Agency

Akinori Ogi, Toshinori Aoyagi, Makoto Deushi Taichu Y. Tanaka, Keiya Yumimoto, Thomas T. Sekiyama, Takashi Maki

> Japan Meteorological Agency Meteorological Research Institute

12 July 2016 8th International Cooperative for Aerosol Prediction (ICAP) @ NOAA Center for Weather and Climate Prediction

Outline

- Aeolian dust (*Kosa*) information to the public from JMA
- Verification of operational aerosol prediction, mainly focused on aeolian dust (*Kosa*) prediction
- Current development status and future planning of a new operational global aerosol forecast model for dust predictions by JMA

• Summary

Information on aeolian dust to the public

JMA has been providing aeolian dust information based on numerical forecasts and surface observations since January 2004.

JMA also provides aeolian dust prediction results (GPV : GRIB2 format) for private weather services via the Japan Meteorological Business Support Center (JMBSC).

Outline of the current operational global aerosol forecast model(MASINGAR mk-2)

Resolution	TL159L40 Horizontal -110km, Vertical 40 layers (Surface – 0.4hPa)
Types of aerosols	10 bins of dust (0.2 - 20μm), 10 bins of sea salt (0.2 – 20μm), Sulfate, Organic carbon, Black carbon
Dust emission process	Depend on particle size, vegetation, surface condition (soil moisture, snow depth etc) and surface wind speed
Dust deposition Process	Gravity (dry deposition), removal due to clouds and rain (wet deposition)
Dynamical model	MRI-AGCM3 (GSMUV)
Calculation interval	Once a day (12UTC initial)
Forecast period	5 days (120 hours)

The MRI-ESM aims to improve the prediction of global warming. We apply this system to the daily aerosol prediction in JMA.

In our daily operational prediction system, we're combining the atmospheric general circulation model (GSMUV) with the global aerosol forecast model (MASINGAR mk-2). We updated the model from November 2014.

Dust emission flux

Function of the surface friction velocity

Verification of dust prediction - Statistical verification -

We calculate the statistics for dust predictions using SYNOP reports from meteorological observatories in Japan.

(Verification period: March-May 2010-2014, 00UTC-09UTC)

Dust fore surface~	cast model 1km conc.	SYNOP reports at meteorological		
Dust forecast	t forecast $\geq 90 \mu q/m^3$		tories in Japan	
(F)	1 0/	Dust observation	Visibility becomes less than 10km because of aeolian dust. Other phenomena (e.g.	
No dust <90µg/m ³		(0)	rainfall) have not been seen within an hour.	
(X)		No dust	Aeolian dust that visibility becomes <10km has not been	
 This threshold va past research res 	alue is based on the sults relating to the	(X)	not also been seen within an hour.	
dust concentration (Iwakura and Oka 気象庁	on and visibility. ada, 1999)	Unknown	Other than those above. (We cannot know whether the aeolian dust has been observed because of the rainfall etc.)	

- Statistical verification -

Threat score for dust prediction in 2010-2014

Forecast period (days)

Hit Rate	MASINGAR	MASINGAR mk-2	False Alarm Ratio	MASINGAR	MASINGAR mk-2	Percent Correct	MASINGAR	MASINGAR mk-2
0 day	0.885	0.725	0 day	0.643	0.531	0 day	0.912	0.943
1 day	0.879	0.727	1 day	0.642	0.528	1 day	0.912	0.944
2 day	0.831	0.697	2 day	0.650	0.542	2 day	0.912	0.942
3 day	0.795	0.669	3 day	0.659	0.548	3 day	0.910	0.941
4 day	0.648	0.493	4 day	0.701	0.633	4 day	0.903	0.930
5 day	0.610	0.484	5 day	0.703	0.645	5 day	0.905	0.928

Model AOD forecast against satellite-based observation

- Quantitative verification - Model AOD forecast against satellite-based observation

According to the comparison with the MODIS AOD data, we have also seen a small positive bias in simulated AOD relative to MODIS AOD observations.

The correlation coefficient is low in the summer and fall because of the uncertainty for smoke predictions in the operating system. So we are going to use the near real-time smoke data (GFAS daily fire products) to the operational aerosol prediction system.

- Quantitative verification -Surface AOD observation in JMA

JMA has been conducting AOD measurements using sun photometers at 3 WMO/GAW stations as a part of its environmental monitoring network.

Replacement of PFR to Sky Radiometer is now underway.

Japan Meteorological Agency

- Quantitative verification - Model AOD forecast against ground-based observation

Ground-based AOD observations by the sun photometer vs. MASINGAR mk-2 model forecasts at Minamitorishima, Japan in 2012

Ground-based AOD observations by the sun photometer vs. MASINGAR mk-2 model forecasts at Yonagunijima, Japan in 2012 1.6 1.6 model forecasts 1.4 1.4 1.2 1.2 observations 1 1 AOD 0.8 0.8 n 0.6 6 0.4 0.4 0.2 0.2 0 01-Mar-12 16-Mar-12 31-Mar-12 15-Apr-12 30-Apr-12 30-May-12 ME: 0.017 RMSE: 0.146 CC: 0.871 Date

These results show a good correlation between ground-based AOD observations by the sun photometer and model forecasts. And there appears to be a small positive bias in these cases.

High-resolution global aerosol forecast model

We have been developing a new version of the high-resolution global aerosol forecast model (MASINGAR mk-2 with TL479L40) and verifying the test data.

Using GFAS daily fire products (thanks to ECMWF!), the high-resolution model simulates dense areas of smoke around northern part of Japan and Himawari-8 also represents these areas.

And some bias correction methods are included in this version for reducing overestimation of AOD prediction.

- Statistical verification -

Forecast period (days)

Hit Rate	MASINGAR mk-2 TL159L40	MASINGAR mk-2 TL479L40	False Alarm Ratio	MASINGAR mk-2 TL159L40	MASINGAR mk-2 TL479L40	Percent Correct	MASINGAR mk-2 TL159L40	MASINGAR mk-2 TL479L40
0 day	0.771	0.795	0 day	0.634	0.486	0 day	0.952	0.970
1 day	0.776	0.795	1 day	0.630	0.490	1 day	0.952	0.970
2 day	0.771	0.795	2 day	0.642	0.516	2 day	0.950	0.967
3 day	0.700	0.695	3 day	0.663	0.472	3 day	0.948	0.971
4 day	0.582	0.563	4 day	0.721	0.533	4 day	0.941	0.966
5 day	0.565	0.479	5 day	0.704	0.594	5 day	0.945	0.962

Summary

- The current operational global aerosol forecast model (MASINGAR mk-2 with TL159L40) has been used for dust predictions since Nov. 2014.
- The statistical verification results show the dust prediction is improved well in the current model and it can predict dust distributions better than the old one.
- The comparison between the AOD observations and the current model forecasts indicates a good performance although we have seen a small positive bias in the current version of the model.
- JMA has been developing a new version of the high-resolution forecast model (MASINGAR mk-2 with TL479L40) for the operational dust prediction system and we have evaluated its forecast accuracy.

That is all for my presentation. Thank you very much for your kind attention!

Outline of the old operational global aerosol forecast model (MASINGAR)

Resolution	T106L20 Horizontal -110km, Vertical 20 layers (Surface - 34hPa)
Type of aerosol	10 bins of dust (0.2 - 20μm)
Dust emission process	Depend on particle size, vegetation, surface condition (soil moisture, snow depth etc) and surface wind speed
Dust deposition process	Gravity (dry deposition), removal due to clouds and rain (wet deposition)
Dynamical model	MRI/JMA98 (MJ98)
Calculation interval	Once a day (12UTC initial)
Forecast period	5 days (120 hours)

The dust emission flux is proportional to the cube of the wind speed.

Updates of the operational global aerosol forecast model

	Old operational global dust forecast model	Current operational global aerosol forecast model
Global aerosol model	MASINGAR (Tanaka et al., 2003)	MASINGAR mk-2 (Tanaka et al., manuscript in preparation)
Dust emission	Function of the wind speed (u_{10}) $F = C u_{10}^{2}(u_{10} - u_{t})$	Function of the surface friction velocity (Shao et al., 1996; Tanaka and Chiba, 2005)
Included aerosol species	Mineral dust	Mineral dust, sulfate, BC, OA, sea salt
Resolution	T106L20 (1.125°)	TL159L40(1.125°) (in 2014) → TL479L40 (0.375°) (in 2017)
Atmospheric model	MRI/JMA 98 AGCM (Shibata et al., 1998)	MRI-AGCM3 (Yukimoto et al., 2012)
Advection	3-dimensional semi-Lagrangian	+
Convective transport	Arakawa-Schubert	Yoshimura (Yoshimura et al.,2014)
Land surface model	3-layer Simple Biosphere	HAL (Hosaka et al., manuscript in preparation)
Coupling of aerosol model with AGCM	Subroutine call in each time step	Connected using SCUP library (Yoshimura and Yukimoto, 2008)

- Statistical verification -Visibility and meteorological conditions

- JMA operates 59 manned observational stations, which observe aeolian dust in terms of the visibility and meteorological conditions.
- The minimum visibility at each station is categorized in different colors on the JMA website.
- When the visibility becomes below 10 km, the station reports aeolian dust in SYNOP messages.

Map of stations observing aeolian dust Kosa or local sand/dust haze during the day

This observation is used for the validation of dust prediction with Threat Score (TS).

- Statistical verification -				
How to calculate the statistics of dust predict	ion			
FO : Forecast ObservationXO : No Forecast ObservationFX : Forecast No ObservationXX : No Forecast No Observat	ion			
Threat Score = $\frac{FO}{FO + FX + XO}$ It combines 'Hit Rate' and 'False Alarm Ratio' into one score for I frequency events.	e ow			
Hit Rate = $\frac{FO}{FO + XO}$ It's the fraction of observed events that are forecasted correctly.				
False Alarm Ratio = $\frac{FX}{FO + FX}$ It's the fraction of forecasts that are wrong, i.e., are false alarm.				
Percent Correct = $\frac{FO + XX}{FO + XO + FX + XX}$ It's the fraction of forecasts the correct.	at are			

- Statistical verification -

Other statistics of dust prediction (MASINGAR mk-2)

Predicted dust concentration against surface SPM observation

We use the data that the Ministry of Environment has been operating as the Atmospheric Environmental Regional Observation System called "Soramame-kun" to compare observed surface SPM and predicted dust concentration. We convert the SPM data at each stations into grid point data to match the model grid. Then we calculate time series statistics for each grid.

(Verification period : March-May 2010-2014)

Japan Meteorological Agency

Predicted dust concentration against surface SPM observation

All over Japan (Ave. Mar.-May. 2010-2014)

Meteorological Agency

Japan

- The ME and RMSE are well improved.
- The RMSE is still high and the tendency is remarkable in western Japan.
- We admit a positive bias (ME>0) for dust

predictions.

Case study for predicted dust concentration against surface SPM observation

XNear Fukuoka city (in 2011)

Observed surface SPM vs. predicted dust concentration (Lat=33.75, Lon=130.00)

- During small dust events, the current model values show good agreement with observations. On the other hand, the predicted dust concentration is still overestimated during large dust events.
- \rightarrow As a result, there is a tendency that RMSE is still large. And there is room for improvement in quantitative dust prediction accuracy.

Near Fukuoka city (Ave. Mar.-May. 2010-2014)

Statistics	MASINGAR	MASINGAR mk-2
Mean Error (ME)	29.80 (μg/m³)	10.55 (μg/m³)
Root Mean Squared Error (RMSE)	126.53 (μg/m³)	96.91 (μg/m³)
Correlation Coefficient (CC)	0.60	0.55

High-resolution global aerosol forecast model

Japan Meteorological Agency

