



# UPDATES ON THE INTERNATIONAL COOPERATIVE FOR AEROSOL RESEARCH MULTI-MODEL ENSEMBLE (ICAP-MME)

Peng Lynch<sup>1</sup>, Jeffrey S. Reid<sup>1</sup>, Laaziz Amraoui<sup>2</sup>, Nicole Asencio<sup>2</sup>, Sara Basart<sup>3</sup>, Angela Benedetti<sup>4</sup>, Malcolm Brooks<sup>5</sup>, Peter Colarco<sup>6</sup>, Arlindo da Silva<sup>6</sup>, Oriol Jorba<sup>3</sup>, Sarah Lu<sup>7</sup>, Edward Hyer<sup>1</sup>, Yaswant Pradhan<sup>5</sup>, Thomas Sekiyama<sup>8</sup>, Taichu Y. Tanaka<sup>8</sup>, Jun Wang<sup>7</sup>

 [1] Marine Meteorology Division, Naval Research Laboratory, Monterey CA; [2] Meteo France [3] Earth Sciences Department, Barcelona
Supercomputing Center, Barcelona, Spain; [4] ECMWF, Reading, UK; [5] UK Met Office, Reading, UK; [6] NASA GSFC, Greenbelt, MD; [7] NOAA NCEP, College Park, MD; [8] Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan



ICAP meeting, Greenbelt, MD, July 11-14, 2016

# MOTIVATION FOR ICAP MME

- It provides a testbed of probabilistic aerosol forecast. Systematic errors arising from the imperfect nature of the models and sensitivity of models to initial conditions are two main sources of forecast errors. Ensemble-based predictions are shown to be able to help control for these errors. Further, multi-model ensemble forecasting for other atmospheric features, e.g., tropical cyclone track and intensity, has proven to be beneficial. We will show AOT ensemble is similar.
- It helps to identify problem areas for aerosol modeling. Areas with the largest diversity requires attention for aerosol model improvement and/or investigation on the driving meteorology.
- Operational aerosol forecast becomes available at many NWP centers, which enables an exploration of aerosol MME.



100°W 90°W 80°W 70°W 60°W 50°W 40°W 30°W 20°W 10°W 0° 10°E 20°E 30°E

Plots Generated Thursday 25 June 2015 12UTC NRL/Monterey Aerosol Modeling

Plots Generated Thursday 25 June 2015 11UTC NRL/Monterey Aerosol Modeling

# CURRENT ICAP MODELS

| Organization            | BSC                                                | Copernicus<br>/ ECMWF                   | JMA                                     | Meteo<br>France                         | NASA                                    | US Navy                                   | NOAA                                    | UK Met<br>Office  |
|-------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|-------------------|
| Model                   | NMMB/BSC-<br>CTM                                   | CAMS                                    | MASINGAR                                | MOCAGE                                  | GEOS-5                                  | NAAPS                                     | NGAC                                    | UKMO              |
| Status                  | QO                                                 | O-24 hrs                                | QO                                      | 0                                       | QO                                      | 0                                         | 0                                       | 0                 |
| Meteorology             | Offline<br>NMMB                                    | Inline<br>IFS                           | inline<br>AGCM                          | Offline<br>ARPEGE                       | Inline<br>GEOS-5                        | Offline<br>NAVGEM                         | Inline<br>GFS                           | Inline<br>UM      |
| Resolution              | 1.4x1                                              | 0.4x0.4                                 | 0.56x0.56                               | 2x2                                     | 0.25x0.31                               | 0.33x0.33                                 | 1x1                                     | 0.35x0.23         |
| levels                  | 24                                                 | 60                                      | 40                                      | 47                                      | 72                                      | 60                                        | 64                                      | 70                |
| DA                      | LETKF <sup>p</sup>                                 | 4DVar                                   | EnKF <sup>p</sup>                       | 2018                                    | 2DVar<br>+LDE                           | 2DVar<br>3DVar, EnKF <sup>p</sup>         | NA                                      | 4DVar             |
| Assimilated<br>Obs      | DAQ<br>MODIS+DB                                    | DAQ<br>MODIS+DB                         | CALIOP,<br>MODIS,<br>Himawari-8         | NA                                      | Neural Net<br>MODIS                     | DAQ MODIS,<br>CALIOP                      | NA                                      | MODIS<br>Dust AOT |
| Species                 | Dust<br>Sea Salt<br>BC, OC<br>(POA,SOA)<br>Sulfate | BC<br>Dust<br>OC<br>Sea Salt<br>Sulfate | BC<br>Dust<br>OC<br>Sea Salt<br>Sulfate | BC<br>Dust<br>OC<br>Sea Salt<br>Sulfate | BC<br>Dust<br>OC<br>Sea Salt<br>Sulfate | Anthro+bio<br>B. Burn<br>Dust<br>Sea Salt | Dust<br>BC<br>OC<br>Sea Salt<br>Sulfate | Dust              |
| Size Bins               | 8 (dust, salt)<br>Bulk (BC,<br>OC, Su)             | 3                                       | 10<br>N                                 | 6<br>ew Memb                            | 5<br>:r                                 | 1                                         | 5                                       | 2                 |
| Bio. Burn.<br>Emissions | NA                                                 | GFAS                                    | GFAS                                    | GFAS                                    | QFED                                    | FLAMBE                                    | GBBEPx                                  | NA                |

• The ICAP-MME is run daily w/ 1x1 deg res at 00Z for 6 hrly fcasts out to 120 hrs w/ a 1-day latency.

 Modal AOT (550nm) and dust AOT (550nm) data in NetCDF is available at http://usgodae.org/cgi-bin/datalist.pl?dset=nrl\_icap\_mme&summary=Go

#### NEW MODEL DATA PUT ON EVALUATION

previous / next t+hour 006

012

018

024

102 108

114

120 sulfate dust

smoke

Main Listing / ICAP Multi-Model Global Total Aerosol Optical Depth Archive





Wednesday 6 July 2016 COUTC NAAPS\_NAVGEM35 Forecast t+006 Wednesday 6 July 2016 C6UTC Valid Time Wednesday 6 July 2016 00UTC GEO5-5 Forecast t+006 Wednesday 6 July 2016 06UTC Valid Time TOTAL Aerosol Optical Depth at 550nm



seasalt total global niosea

byzantium eastasia subtropatl pacific conus satlantic sioaus npolar







Wednesday 6 july 2016 COUTC MASINGAR Forecast t+006 Wednesday 6 july 2016 D6UTC Valid Time TOTAL Aerosol Optical Depth at 550nm



NGAC with full species

Wednesday 6 July 2016 COUTC NGAC Forecast t+006 Wednesday 6 July 2016 C6UTC Valid Time TOTAL Aerosol Optical Depth at 550nm



#### New model MOCAGE



UKMO/Unified Model Imagery Unavailable

BSC Imagery Unavailable

#### DATA FLOW OF THE ICAP MODELS



<u>Dec2011Jun2012Dec2012Jun2013Dec2013Jun2014Dec2014Jun2015Dec2015Jun2016</u>

# 72 HOUR FORECAST RMSE: (2012) THE ICAP-MME IS THE TOP PERFORMER



#### ICAP MODELS DUST AOT AT CAPE VERDE (2015)



#### ICAP MODELS DUST AOT AT BEIJING (2015)



#### ICAP MODELS DUST AOT AT KANPUR (2015)



#### 2012 BI-SEASONAL MEANS AND SPREADS

Large spread among models



Sessions, et al., ACP 2015

# SOURCES FOR AOT DIVERSITY

- Aerosol sources: anthropogenic and biogenic emissions, and biomass burning emissions from different inventories, dynamically-driven dust and sea salt emissions based on different model meteorologies.
- Aerosol removals, e.g., parameters for dry deposition, model precipitation.
- Aerosol transport, especially in the vertical (PBL height, mixing scheme)
- Aerosol chemistry (SO2->SO4, SOA etc)
- Aerosol optical properties, e.g., absorbing/scattering efficiencies.
- Aerosol microphysics, e.g., speciation definition, size bins.
- Hygroscopic growth with relative humidity.
- For models with data assimilations
  - the diversity in assimilation methods
  - the observed AOT data to be assimilated and
  - their pre-assimilation treatments.

# DIVERSITY OF AOT RESULTED FROM POSSIBLE DIVERSITY OF METEOROLOGY

2013083000



Total AOT spread among ICAP models (t+6hr)



Total AOT spread among ICAP models (t+18hr)



### POSSIBILITIES FOR NEXT ICAP UPDATE

- Add global speciated (or fine/coarse) surface concentration fields.
- Add vertical component. Start with the MPLNET sites.
- Pressing meteorological variables that impact aerosol processes:
  - 1) boundary layer related parameters, e.g., surface wind, PBL height, t, q.
  - 2) precipitation, which is key for scavenging
  - 3) RH, which is important for relating aerosol mass to extinction and AOT.
- All these involve data requests to all centers.

### NAAPS VERTICAL PROFILES AS AN EXAMPLE



# THANK YOU