



## Aerosol characterization using airborne HSRL and some applications

Sharon P. Burton<sup>1</sup>, Rich Ferrare<sup>1</sup>, Chris Hostetler<sup>1</sup>, John Hair<sup>1</sup>, Pablo Saide<sup>2</sup>, Pete Colarco<sup>3</sup>, Arlindo da Silva<sup>3</sup>, Carolyn Butler<sup>1,4</sup>, Amy Jo Scarino<sup>1,4</sup>, Marta Fenn<sup>1,4</sup>, Tim Berkoff<sup>1</sup>, David Harper<sup>1</sup>, Tony Cook<sup>1</sup>, Patricia Sawamura<sup>1,5</sup>, Greg Carmichael<sup>6</sup>

<sup>1</sup> NASA Langley Research Center, Hampton VA
 <sup>2</sup>National Center for Atmospheric Research, Boulder CO
 <sup>3</sup>NASA Goddard Space Flight Center, Greenbelt VA
 <sup>4</sup>Science Systems and Applications, Inc., Hampton VA
 <sup>5</sup>Universities Space Research Association
 <sup>6</sup>CGRER, University of Iowa

## High Spectral Resolution Lidar, HSRL-2







High Spectral Resolution Lidar 2-

- measures aerosol extinction at 355 nm and 532 nm, backscatter and depolarization at 3 wavelengths
- flown on four field missions so far (B200)
- next mission ORACLES (ER-2)
- follow-on instrument to HSRL-1, >20 field missions

#### Uses –

- Satellite Validation
- Testbed for future space instruments and retrievals
- Overview and context during field missions
- Input to and validation of models



## **HSRL-2 measurements**

- Measurement products:
  - Aerosol extinction (355, 532 nm)
  - Aerosol backscatter (355, 532, 1064 nm)
  - Particle depolarization (355, 532, 1064)
  - Lidar ratio (355 nm, 532 nm)
  - Color ratios/Angstrom exponents
  - Aerosol typing
  - Aerosol mixed layer height
- Benefit of lidar over passive: vertically resolved measurements. Information about aerosol layer heights, vertical distribution.
- Benefit of HSRL over elastic backscatter: quantitative aerosol extinction, more information content relevant to aerosol type





## **Classification Example – Mexico City**





## HSRL aerosol types



- Four dimensions = aerosol intensive properties
- Semi-supervised classification in 4D using labeled samples



See also: Burton et al. "Aerosol classification of Airborne High Spectral Resolution Lidar Measurements – Methodology and Examples", AMT 2012







### **HSRL-DIAL and GEOS-5 Type Comparison**





## A Tale of Two Dust Layers 1. Transported Saharan dust





Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne HSRL-2 Burton et al. ACP 2015

trajectory heights at sample point 1800-2200m ASL

## 2. Chihuahuan desert, dust at the source

#### New Mexico Arizona Tucson Dust source Aerosol Backscatter (532 nm) 17.2 Mm<sup>-1</sup>sr<sup>-1</sup> Time 16.8 16.9 17.0 17.1 5 10 February 8, 2013 5

- Chihuahuan desert in southern New Mexico
- Low altitude and concentrated backscattering imply observation is close to the source.



# Linear particle depolarization ratio at 3 wavelengths measured by HSRL-2







Dust particle size distribution loses largest particles during transport

 Maring, et al.: "Mineral dust aerosol size distribution change during atmospheric transport", JGR, 2003



## **Dust depolarization wavelength dependence**



- Both HSRL-2 dust cases have analogs in HSRL-1 record (2 wavelengths)
- Transported Saharan dust: peak at 532 nm
- Local dust: increasing spectral dependence
- Likely conclusion: larger particles present in the local cases



## Case study: HSRL-2 observations of aerosol layers September 11, 2013, Houston TX



Mm<sup>-1</sup>sr<sup>-1</sup>

10

5

2

0.5

0.2

0.1

- HSRL-2 airborne lidar provides vertically resolved measurements of aerosol layers
- During DISCOVER-AQ, flight track thoroughly covered Houston and surrounding regions
- Loop repeated 4x per day, frequently sampling several days in a row
- This is a rare opportunity to observe diurnal and day-to-day evolution in so much detail



## Smoke and Boundary Layer evolution, Sep 11-12



#### HSRL-2 Aerosol Type Sep 11-13





WRF-Chem model run performed by Pablo Saide, U. Iowa, for the SEAC4RS campaign, to provide guidance for flight planning and evaluate model in near-real time

Domain includes the DISCOVER-AQ Houston campaign as well

- WRF-Chem v3.5 CBMZ, 4bin MOSAIC, 12km dx, 52 vertical lvls, and WRFtracer for emission regions/sectors
- Emissions: anthropogenic, biomass burning (FINN, QFED2) with plumerise, MEGAN biogenics, dust & seasalt. MACC boundary conditions
- AOD assimilation (NRL product) every 3 hours, 1 cycle a day (Saide et al., ACP 2013)



## **WRF-Chem Forecasting – Pablo Saide**









## **Aerosol Type samples**





# Variability of lidar intensive properties within a class

Aerosol typing from HSRL1/HSRL2 uses aerosol intensive parameters in a 4D or 5D space to match observations to the nearest aerosol class. (*Burton et al. AMT 2012*)

Specific samples can vary even within a type, due to

- <u>mixing</u>
- composition differences due to different sources (for smoke: e.g. wildfire vs. agricultural)
- humidification
- aging & processing, etc.
- ???

(caveat: smoke class shown here differs somewhat from published HSRL data, due to improved choice of training samples.)





Hour [UTC]



## HSRL enables vertically resolved quantification of external mixtures of aerosol type





- Aerosol often occurs as mixtures
- Derived mixing rules for lidar

$$X = PA + (I - P)B$$
  

$$\Sigma_X = P\Sigma_A P^t + (I - P)\Sigma_B (I - P)^t$$

 Mixing methodology produces vertically resolved estimates of mixing ratio and partition of extinction

*See also*: Burton et al. "Separating mixtures of aerosol types using airborne HSRL" *AMT* 2014

Case: Saharan Dust mixing with Marine Boundary Layer, Caribbean Sea, 8/22/2010

#### **Aerosol Type, smoke samples**





## HSRL-2 Intensive variables for smoke are different each day



Deer Park

Smith Point

H-Sugarland

Manvel Croix



Differences could be due to

- different sources or combustion types
- humidification
- aging & processing

## **GEOS-5 Smoke optical properties**



- Coincident data for all SEAC4RS flights
- Subset of data with GEOS-5 classification of smoke:  $F_c \ge 0.75$  (Nowottnick et al., 2015)
- Red ellipse is envelope of values from HSRL classification (Burton et al. 2012)
- Good agreement in lidar ratio, backscatter color ratio
- HSRL observations show some depolarization in smoke, none in model

### **Summary**



- HSRL-2 airborne lidar measurements provide vertically resolved aerosol measurements with high information content useful for validating models and model assimilation
- Includes multiple products with varying levels of detail for validating models
  - Layer heights, including mixed layer height for validation of model processes and transport
  - Aerosol extinction and backscatter for validation of aerosol abundance, vertical distribution and transport
  - Aerosol classification product for non-quantitative validation of aerosol sources and composition
  - Aerosol intensive parameters (lidar ratios, angstrom exponents, depolarization ratios) for advanced quantitative validation of aerosol properties



## BACKUP

### **HSRL-2** measurement products





+Microphysics retrieval (not shown). See Rich Ferrare's talk.

#### Benefit of lidar over passive: vertically resolved measurements. Information about aerosol layer heights, vertical distribution.

**Benefits of HSRL-2 lidar** 

- Benefit of HSRL over elastic backscatter: quantitative aerosol extinction, more information content relevant to aerosol type
- Airborne HSRL: since airborne tracks are not of interest for global assimilation, provides independent higher informationcontent data set for model validation







## Case: transported smoke observed by HSRL-2 in Denver, 17 July 2014





# Case: transported smoke observed by HSRL-2 in Denver, 17 July 2013





# Surprising spectral dependence of particle depolarization ratio

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.25

0.20

0.15

0.10

0.05

0.00

0.25

0.20

0.15

0.10

0.05

0.00



- Particle depolarization ratio of 0.09 at 532 nm consistent with aged smoke
- Biggest particle depolarization ratio of 0.24 at 355 nm
- Probably indicates that the nonspherical particles are small.
   Possibilities include
  - Fine mode soil/dust (Nisantzi et al. 2014)
  - Chain aggregates of soot in a sulfate shell (Kahnert et al. 2012)
  - Non-sphericity in another component of smoke?

# Summary of wavelength dependence of particle depolarization ratio



**Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne HSRL-2** Burton et al. *ACP 2015* 

- Note similar 355 nm particle depolarization ratio for smoke and dust
- Implications for using only 355 nm particle depolarization ratio for aerosol typing



## **HSRL-2** Intensive variables for smoke are different each day

-idar ratio (sr) (532 nm)

100

80

20



## **Relative humidity: another potential factor**



 known from theory (Mie modeling) that lidar intensive variables vary with relative humidity — Loeb and Schuster, JGR, 2008 and Su et al. JGR 2008

Hour [UTC]