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A new ensemble system for Navy aerosol g
forecasting was developed ( ) Peesoaren
and recently published [Rubin et al. 2016].

http://www.image.ucar.edu/DAReS/DART/

« ENAAPS-DART is being implemented with an
for MODIS AOT assimilation.
tested as a for aerosol data
assimilation.

« Testing of a new

for ensemble data
assimilation [Hodyss 2011, 2012].

 Evaluation of the ensemble for

http://aeronet.gsfc.nasa.gov/
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Operational Navy Aerosol
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e Forecasting

 Navy Aerosol Analysis Prediction System (NAAPS) [christensen et al. 1997]
« Offline, NAVGEM Met (winds, temp, humidity etc.)
* 4 aerosol species, out to 6 days, 1/3 degree resolution

 Navy Variational Data Assimilation System for Aerosol Optical
Depth (NAVDAS-AOD) [zhang et al. 2008]

e 2D-Var Smoke Anthro/Biogenic Fine
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Flow-Dependence: Making better use

of observational information

« Ensembles provide a means for
representing flow-dependent forecast
uncertainty that varies in space and time. |

......
zzzzzz
uncertainty

* Flow-dependent representation of

uncertainty results in a better DA analysis. aaiysis

 Ensembles provide probabilistic output.

Time
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ENAAPS coupled to an Ensemble
AdeStment Kalman Filter [Rubin et al. 2016]

1. Using an RMSE metric, ENAAPS-DART performs about the same as NAAPS with NAVDAS-
AOD at AERONET sites (6 month experiment, 20 member)
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NAVDAS-AOD: observationally
driven, produces large DA
corrections

EAKF: captures dust front shap
(not magnitude).
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ENAAPS coupled to an Ensemble
AdeStment Kalman Filter [Rubin et al. 2016]

1. Using an RMSE metric, ENAAPS-DART performs about the same as NAAPS with NAVDAS-
AOD at AERONET sites (6 month experiment, 20 member)
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DART EAKF |
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seorsor OF the aerosol world?

ENAAPS-DART base system assimilates data assimilation quality
MODIS Aerosol Optical Thickness (AOT) [zhang et al. 2006, Shi et al. 2011, Hyer et al.

2011]

The ability of the EAKF data assimilation system to spread
observational information in the system using
makes it ideal for expanding the aerosol observing

network, particularly for

Numerical Weather Prediction Aerosol Forecasting?

; _\Global Radiosonde Network

AP

1p://aeronet. gsfc.nasa.gov.

=

NRL Aerosol DA | 8



Assimilation of AERONET
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o observations for aerosol forecasting

1. Is the successful use of this network of observations dependent
on the data assimilation methodology?

2. What is the impact of data assimilation of AERONET on its own
and combined with other observations?

3. Can this network serve as a backup if satellite observations are
not available?

4. Can we identify locations where new sites would be most
beneficial?

http://aeronet.gsfc.nasa.gov/ =
http://www.nasa.gov/topics/earth/features/aeronet.html



USNAVAL Impact of Assimilating AERONET on

S AOT Analysis RMSE

Only ground-based AERONET AOT
observations are assimilated
(O= obs site)

1. Analysis verified with MODIS AOT

2. Largest error reduction in high
observation density regions

NAVDAS-AOD

. Large increases in error can occur
with NAVDAS-AOD (2D-Var data
assimilation)

. The spatial extent of the error
reduction is much greater with EAKF

These results demonstrate the
importance of flow-dependent
covariances for assimilating
sparse aerosol-related
observations
on a global scale
(ship, aircraft obs, lidar...)

Error s e Error

Decrease—loo -70 -40 —|10 6 1|0 40 70 100 Increase
Percent Change in Error Due to

AERONET Assimilation
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USNAVAL Why do sparse obs like AERONET negativel

restarc impact the NAAPS with 2D-Var system?

Case Study: August 12, 2013 (122) NAVGEM Surface Wind Speed
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0.40

N L 3 - e O\ o
o - : Pl o™ . S Y
L - 2
L. e

b o 100 | 0.20
NAAPS Prior A

80
Prior - MODIS

0.05

40.01

40.00

41-0.01

-0.05

Yy -0.20

AERONET Assimilation| 11 —0.40

0.05 0.20 0.40 0.60 0.80 1.00



Assimilation of AERONET observations
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Restarc with MODIS AOT: What is the main impact?

http://www.nrlmry.navy.mil/aerosol/
[Sessions et al. 2015]

Assimilated MODIS+AERONET
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USNAVAL What is the impact of AERONET

assimilation on the 24-hr forecast?
AERONET Sites with Observations During Experiment 24-hr Forecast Verification
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* Verification of the 24-hr forecast at AERONET sites g . .f’.g °

(forecast and obs are now independent) ;:‘0.1 %
* Forecasts initialized with AERONET only assimilation had | ;

reduced RMSE at several sites in India and East Asia © o1 02 03 04 05 06 07
24-Hr Forecast RMSE (MODIS AOT (550nm) assimilation)

* RMSE was approximately the same for regions where
AERONET observations are dense

AERONET could serve as a back-up over land for synoptic scale events if
satellite observations are not available aeroner assimilation| 13



Where would new observations be most
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ResearcH!  hhaneficial?

New observations are idea in locations where:
1. Observational constraint is limited
2. Forecast uncertainty in relatively large

AERONET

AERONET helpful
in North Africa

MODIS

'_ ks
L Also can see
o .
i where new sites
+ .
& might be
o
= beneficial
—— m— | . ]
0 20 40 60 80 100 0 5 15 25 50 920 0 10 15 20 25 30 35 40 45
Percent Impact by Observations Normalized Ensemble AOT Standard Percent of Having No Obs Impact and
(Analysis Increment > 0.001) Deviation (%) Normalized Standard Deviation > 30%
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Researcil  data assimilation
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Ensemble data assimilation methods
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Ensemble data assimilation methods
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Testing algorithm of Hodyss 2012 for applying
nonlinear regressions to produce the posterior. 80 Member Ensemble AOT Skewness
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Ensemble Data Assimilation:
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Researcil. Moving to the Vertical

First, we need to understand what the ensemble is capable of in the vertical...
6-hr Forecast Mean Aerosol Mass (ug/m3)

6-hr Forecast Mean AOT - 80 Member ENAAPS
Auqgust 15, 2013 (67)
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In general with NAAPS/ENAAPS,

we find that the aerosol mass is

concentrated at the surface with
some diffusion in the vertical.

=
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Altitude (km)

At the same time, the ensemble
spread is limited away from the
surface. °
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Ensemble Data Assimilation:

U.S.NAVAL

Researcil - Moving to the Vertical

First, we need to understand what the ensemble is capable of in the vertical...
6-hr Forecast Mean Aerosol Mass (ug/m3)

Altitude--msl (km)

Assimilating this vertical
observational information can be a
challenge for a pure ensemble
system, especially elevated aerosol
layers like seen in the HSRL.
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In ENAAPS, how would the obs information spread? Ensemble Mean Aerosol Extinction
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Ensemble Data Assimilation:
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Researci Moving to the Vertical

Some of the questions that we need to address:
1. What are the observational errors for lidar? Average obs?
Backscatter to extinction?

2. Can we rely on a pure ensemble system for assimilating
observational information in the vertical? Or do we need a hybrid
strategy?

3. Should we look to add new sources of variability in the ensemble to
capture the uncertainty in the vertical? Emission injection heights,
deposition velocities?

4. What is the behavior of adaptive inflation in the vertical?

5. Vertical localization?

Assimilation of vertical information for aerosol is
complicated. Therefore, we need to rely on case studies
(ie. Huntsville) to understand the behavior before we can
apply the dataset globally. NRL Aerosol DA| 20



U.S.NAVAL NRL Aerosol Data Assimilation

LABORATORY Re C a °

The ENAAPS-DART system has been developed and is being
implemented in a semi-operational configuration with 80 member
ensemble. This will be used to feed into the NWP system as well.

Having flow-dependent forecast uncertainties is important for assimilating
sparse observations such as AERONET

It is expected that this same finding will apply to other types of observations
such as surface measurements, lidar, aircraft measurements...

The biggest impact of incorporating AERONET observations into the data
assimilation component of the aerosol forecasting system is the ability to
capture peak aerosol events (AOT > 1) as well as temporal variability.

24-hour forecast results indicate that AERONET could serve as a
backbone observing system for aerosol forecasting, not just for verification.

A new methodology (Hodyss 2012) for dealing with skewness in the
ensemble prior is being tested within the ENAAPS-DART framework. This
may help with near-background biases found in ENAAPS-DART.

The ensemble is being analyzed in order to understand the possibilities for
lidar assimilation. Results currently indicate that a hybrid method would be
beneficial with vertical constraint, while still allowing for the ensembles to
spread observational information in the horizontal.




