AERCOM and other things

Stefan Kinne, MPI-Meteorology

overview

- AeroCom & AeroSAT
- current topics in AeroCom
- reference aerosol data
- ICAP 'biases'
- ICAP variability (AOD, AODf, AODc, FMF)
- current topics in AeroCom
- next annual meeting: 9-13 Oct. 2017 Helsinki

AeroCom & AeroSAT

- AeroCom
 - -constrain uncertainty of bottom up modeling
 - evaluation strategies
 - best model practices
 - emerging constraints
 - reference fields
- AeroSAT
 - -the (global) remote sensing data branch
 - aerosol-type retrieval
 - retrieved AOD uncertainties
 - long-term data records (anomalies, trends?)
 - Interactions with modeling

evaluation strategies

- detailed evaluation to trusted data / relations
 optical properties, satellite relationships
- regular 'standard' submissions expected
 to monitor model evolution
- web-site data display for self-checks
 - <u>http://aerocom.met.no/data.html</u>
 maps of AeroCom & related projects
- encourge volunteers to conduct experiments
 - participation >5 models recommended

ongoing 'experiments' (1)

- aerosol changed cloud-lifetime
 - Minghuai Wang (rain frequ. susceptibility)
- hindcast (1980-2015) simulations
 - -Mian Chin (vs. satellite and ground records)
- radiative forcing
 - Bjorn Samset (BC)
 - Stephanie Fiedler (RFMIP)
- simulated optical property evaluations
 - -Nick Schutgens (vs. satellite & ground)
- nitrate treatment
 - -Huisheng Bian

ongoing 'experiments' (2)

- aerosol properties / transport at the UTLS

 Mian Chin
- dust as function of landuse and suf. winds

 Paul Ginoux
- biomass burning (emission corr factors ?) –Mariya Petrenko
- aerosol and precipitation

 Bjorn Samset (PDRMIP)
- Aerosol in polar regions – Maria Sand

best modeling practices

- documentation of model and changes
 - ... it will help all
- regular baseline submission
 - hWps://wiki.met.no/aerocom/phase3-experiments
- advise on how to model components

 balancing between detail and complexity
 - organics
 - nitrate
- advise on needs and on overkill
 - chemistry, size representation, components, ...

emerging constraints

- volcanic sulfate on aerosol (indirect) forcing
 - Island, Hawaii

 Gettelman, Hayward
- multi-sensor satellite on hydrol. processes
 Cloudsat & MODIS & ... – Kentaroh Suzuki
- data of old / new field experiments
 VOCALS, ORACLES

 Bob Wood, Jens Redemann
- ground in-situ on (dry) aerosol properties
 NOAA / ACTRIS sampling

 Betsy Andrews

aerosol reference fields

- -... also potential for ICAP defaults ?
- AERONET & MAN
 - quality ... but 'incomplete'
- MACv2

(2000-2014 average)

- AERONET / MAN extended with AeroCom ensemble modeling
- ICAP ensemble

(2 years: 2014/2015)

- forecast based (with model / data biases)
- let us compare ... AODc and AODf
 AODc AOD of aerosol sizes > 0.5um radius
 AODf AOD of aerosol sizes < 0.5um radius

AERONET vs AERONET+MAN

MACv2 - seasonal AOD

ICAP - seasonal AOD

ICAP minus MACv2 - AOD

ICAP 'biases' ? ... or trends ?

- larger AOD (by ca 20%)
 - similiar 50% AODf / 50% AODc split
- AODf
 - larger

-central Africa, boreal sum, ocean backgrd

- smaller
 - -east Asia
- AODc
 - larger

- Arabia, west Africa biomas, mid-lat oceans

- smaller
 - dust off Africa over Atlantic

now on variability

- ICAP variability (for AOD, AODf, AODc, FMF)
 - definition
 - create local 1x1 monthly PDF using 0, 3, 6, 9 and 12 hour ensemble data of 2 years
 - -var = (100-80% average) (20-0% average)
 - -for AOD, AODf, AOD c
 - relative to average
 - identify regions of (relative) variability
 - FMF as function of AOD
 - if high AOD due to pollution \triangle FMF negative
 - if high AOD due to dust \triangle FMF positive

ICAP - averaged monthly variability

ICAP - seasonal AOD

var/avg ICAP-AOD

on AOD variability

- coarse-mode more variable than fine-mode
- relative fine-mode variability
 - larger
 - -wildfire / pollution regions, southern oceans
 - smaller
 - -tropics
- relative coarse-mode variability
 - larger
 - Mediterranean, East Asia, Southern Ocean
 - smaller
 - SH subtropics, US

AOD fine-mode fraction

AOD fine-mode fraction

Δ FMF

on AOD fine-mode fraction

- (ca 5-10%) larger in ICAP than in MACv2
- larger in SH higher lat. during boreal winter
- smaller over trop. Asia during boreal summer
- smaller over Africa/Europe during boreal winter

- relative larger variability

 SH higher lat. during boreal fall
- relative smaller variability – tropics

ICAP – FMF variability

ICAP - FMF change with AOD increase

annual meeting

- next meeting: Oct 9-13 at Helsinki, FI
 - AeroCom (Mo-Thu) AeroSAT (Thu-Fri)
 - hosts Gerrit de Leeuw, Hannele Korhonen FMI
 - info and registration
 - <u>http://aerocom.mpimet.mpg.de</u>
 - august 1 deadline

aerosol-type retrieval

- classifying aerosol by properties
 - AOD, depolarization, angstrom (size), altitude – different from modeled components
 - what is useful? what is not?

-what is easy?

- AODc vs AODf
- dust AOD (land AODc, large AODc over sea)

-what is difficult ?

- separating pollution and wildfires
- mixtures

retrieved AOD uncertainties

assimilation needs (pixel) uncertainties

- NASA's general estimates not that useful
- ESA's CCI started with pixel uncertainties
 - estimates initially differed ... but are now adjusted after retrieval comparisons over AERONET sites
 - still only done for ATSR (no operating sensors right now and smaller coverage than MODIS ... quality comparable
- level 3 uncertainties remain difficult

long-term data records

column aerosol amount (AOD and AODf)

- AVHRR 1980-2016
- TOMS/OMI 1979-2016
- ATSR 1996-2012
- MODIS (T/A) 2000-2016
- MISR

2000-2016 2000-2016

no significant global trend since 1995
regional shifts from US/EU to eastern Asia

- column aerosol absorption
 - TOMS /OMI (SSA) 1979-2016
 - TOMI /OMI (UV AI) 1979-2016
 - MISR (more / less) 2000-2016

satellite AOD biases

if we believe MACv2 (not specific for year 2008 though)

ATSR

interactions with modeling

- how wrong are models ?
 - statistics needed
 - sampling matters (filters ... daytime, clouds)
- what quantities are useful?
 - compare to what we can observe
 - try to get observations for what we need
 - simulate data with a forward model
 - is relative change sufficient ?
 - multi-sensor / multi data relationships ?
- are aerosol type retrievals useful ?
 - most types are not components in modeling

annual meeting

- next meeting: Oct 9-13 at Helsinki, FI
 - AeroCom (Mo-Thu) AeroSAT (Thu-Fri)
 - hosts Gerrit de Leeuw, Hannele Korhonen FMI
 - info and registration
 - <u>http://aerocom.mpimet.mpg.de</u>
 - august 1 deadline

maps

- to address globally varying (atmospheric) properties I (we all) like MAPS
 more informative than global averages
- Bill & Co has done this for clouds ...
 - so this could also be done for aerosol
- Bill & Co used satellite data and smart models
 and this also has been done for aerosol

AOD – diversity in satellite remote sensing same year ... but different answers, coverage, models

what we really want

- complete coverage
 - satellite retrievals fail at times (e.g. over snow)
- address not just aerosol amount (e.g. AOD), but also aerosol size (FMF) and absorption (AAOD)
 - satellite retrieval mainly address AOD, FMF at best over oceans, and absorption at best in a qualitative sense (e.g. UV aerosol index)
- high accuracy & property consistencies
 - satellite retrievals make different assumptions and are handicapped by a poor background
- MAC (now version 2)

MAC v2

Max-Planck-Aerosol Climatology

• use

for mid-visible aerosol properties » AOD, AAOD, FMF, Angstrom

- high accuracy of AERONET / MAN
- spatial context from modeling

merge multi-year monthly statistics

 1x1 lat/lon, monthly maps for spectral dep properties (fine & coarse) » AOD, SSA, g for vertical distribution (fine & coarse) for anthrop. fraction of fine (function of time)

MACv2

satellite AOD biases

if we believe MACv2 (not specific for year 2008 though)

ATSR

MACv2 - AOD and AAOD by size-mode fine-mode coarse mode

Radiative impacts – here we are

direct radiative effects - 2005

solar +IR

solar only

anthropogenic

indirect forcing ?

we tried it 2 ways ... almost identical result

- assuming that the Twomey effect only matters
 - more CCN from anthr. aerosol → more CDNC in water clouds → more cloud solar reflection
 existing CDNC (natural) background matters

complex: use a vertical distribution, assume SS (.1%), determine CCN

simple: use AODf CDNC relations of MODIS and ATSR retrievals

aerosol forcing – 1965 to 2025 direct indirect total

aerosol forcing highlights

- aero forcing has not changed much since 1985
 regional shift though: US/EU → SE-Asia
- indirect (cloud effects) dominate TOA response
 -0.8 W/m2 (indirect) -0.2 W/m2 (direct)
- aerosol absorption dominate the atm heating -1.1 W/m2 (direct)
- AOD dominate the response at the surface -1.3 W/m2 (direct)

strong spatial (and also seasonal) variability

BC forcing – 2005 total BC anthrop BC

0.2500

AOD-fields

- what is the natural background ?
- anthrop BC effects
 - TOA forcing +0.35 W/m2
 - atm forcing +0.95 W/m2

0.0000

0.7500

0.5000

summary

- all aerosol properties are highly variable
 different sources, short lifetime, transport
- although global averages are given ...
 maps display diversity (e.g. source regions)
- regional impacts are often an order of magnitude larger than global averages
 - the indirect global aerosol forcing is -.2 W/m2 regional responses range from -6 to +6 W/m2

finally **Bill**

- didn't we all hate to get interrupted during presentations by Bill ...
 - sometimes valid, sometimes for his pleasure
- but there is also a gentler & constructive side
 ... once you get to know him
- in that way his resembles his 'German twin'
 - unfortunately also in terms of recent health issues
- so ... with wishes from Ehrhard
 - get well ! ... and
 - keep challenging us !

Max-Planck Aerosol Climatology

ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2017

- 1x1 deg global, monthly, aerosol opt. properties
- capturing today's average properties for
 - column amount ('attenuation') AOD
 - column absorption ('composition')
 AAOD
 - particle 'size' information FMF, Angstrom
 - how? combine!
 - quality statistics from sun-photometer data
 - completeness from bottom-up modeling

relying on OBSERVATIONS of AERONET and MAN plus background from modeling (no direct use of satellite data)

why MAC?

... climate studies require aerosol rad. properties

- simulations from global modeling
 - accuracy suffers from input and complexity
 - time-consuming
- prescription by a climatology (e.g. MAC)
 - direct link to observations
 - fast (and simple to implement)

while the climatology can be a nice option in many applications ... the reliance on context from global modeling underlines to importance on advancements in detailed aerosol modeling

use **observations** if you can

complete modeling

extended with model context \rightarrow MACv2

particularly useful with extra help

- to make it useful for climate applications
 - anthropogenic fraction
 - -fine-mode only (no anthrop dust)
 - temporal variability (seasonality)
 - temporal variability (inter-annual)
 - only anthrop AOD change (const coarse-m.)
 - spectral variability
 - vertical distribution
 - microphysics (fine-mode size \rightarrow CCN conc.)
 - -changes to low cloud properties

Ver.2 vs **Ver.1** (what changed?)

- merge absolute quantities, now in two steps
 - not relative properties (SSA, FMF, ...)
- use MAN data over oceans
 - reduced dep. on modeling
- use a different (higher) PI fine-mode state
 - anthropogenic AOD dropped by 30%
- outcome
 - AOD remains similar, but anthrop AOD smaller
 - AAOD is much stronger
 - less direct forcing (-0.5W/m2 to -0.2Wm2)

recent Ver.2 update (what changed?)

- better absorption attribution to size-modes
 - allows now to quantify aerosol components

AOD by components

AOD SSAASY rad. transfer needs

AOD SSAASY rad. transfer needs

dir rad. impacts

changing impact on surf net fluxes

final slide

update for MACv2 is available

ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2017

- next monthly pdf in place of single value
- considering changes in fine-absorption
- for specific spectral data needs: contact me
- forcing (and rad.effects)
 - indirect (via clouds) eff.s most import at TOA
 - direct effects most imp. in atm and at surface
 - over the last decades the aerosol induced reductions to on surface net-fluxes increased

fit properties to pre-defined Components

coarse mode spectral

anthr. / fine mode spectral

direct rad.effects overview 2005

direct anthrop TOA effect

indirect anthrop TOA effect

TOA components 2005

atm components 2005

surface components 2005

forcing over time

TOA - 1985 vs 2005

atm - 1985-2005

rad transfer simulations 'all components' minus 'all without BC'

AERONET - AOD

Δ **AODt**

Δ **AOD**f

Δ AODc

