

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC UPDATE

Carlos Pérez García-Pando

Oriol Jorba, Enza di Tomaso, Sara Basart, Marc Guevara, María Gonçalves, Vincenzo Obiso, María Teresa Pay, Carles Tena

> Atmospheric Composition Group Earth Sciences Department Barcelona Supercomputing Center

9th ICAP Meeting, Lille France

Development of MONARCH Multiscale Online Non-hydrostatic AtmospheRe CHemistry mode

Multiscale: global to regional scales allowed (nesting capabilities) Non-hydrostatic dynamical core: single digit kilometre resolution allowed On-line coupling: weather-chemistry feedback processes allowed Ensemble-based data assimilation system for aerosols

EXCELENCIA

SEVERO

NMMB

Model features

- Non-hydrostatic Multiscale Model NMMB (Janjic et al., 2004)
- Arakawa B grid (Arakawa and Lamb, 1977)
- Vertical hybrid σ-pressure coordinate system (Simmons and Burridge, 1981)
- A rotated longitude-latitude coordinated system is used for regional simulations

Physics schemes

- Radiation: RRTMG
- Convection: Betts-Miller-Janjic (BMJ) (Betts, 1986)
- Clouds and microphysics: Ferrier (Ferrier et al., 2002)
- Turbulence: Mellor-Yamada-Janjic (MYJ) (Janjic, 2001)
- Land model: NCEP NOAH (Eck et al., 2003) and LISS

BSC Current forecasts and plans

Barcelona Supercomputing Center Centro Nacional de Supercomputación

CURRENT FORECASTING – DEVELOPED/AVAILABLE – UNDER DEVELOPMENT - PLANNED

DOMAIN	GLOBAL (ICAP)	REGIONAL North Africa, Middle East and Europe (SDS-WAS)	REGIONAL Europe/Iberian Peninsula/Urban Areas (CALIOPE)
Model	MONARCH	MONARCH	CMAQ (DREAM for dust) MONARCH
Status	QO	0	0
Meteorology	Inline: NMMB	Inline: NMMB	Offline: WRF-ARW Inline: NMMB nesting
Resolution	1.4x1 deg <mark>0.7x0.5 deg</mark>	0.1x0.1 deg 0.03x0.03 deg	0.1x0.1 / 0.04x0.04 / 0.01 x0.01
lovole	24	40	30
IEVEIS	48	60-70	60-70
DA	LETKF	LETKF	NA LETKF
Assimilated Obs	MODIS DT+DB (DU) MODIS DT+DB (ALL)	MODIS DT+DB (DU)	NA MODIS DT+DB (ALL)
Aerosol Species	DU, SS, BC, POA, SOA bio, SOA anthro, SU, NI	DU	CMAQ (AERO5) MONARCH aerosols
Gas phase chemistry	CBM-IV CB05 ONLINE and CLIMATOLOGY		CB05 CB05
Emissions	HERMES 3.0 (HTAP v2) MEGAN ONLINE		EMEP, MEGAN / HERMES, MEGAN/ HERMES MEGAN
Bio. Burn. Emissions	GFAS NRT		NA NRT

HERMESv2.0: An emission model for Europe and Spain

Barcelona

Center

BSC

Supercomputing

6

• EXCELENCIA.

SEVERO

HERMESv3.0:

A multiscale emission modeling framework

- A stand-alone tool for simulating emissions on a user-defined grid for global, regional and urban air quality models.
- Users can select, combine and scale multiple inventories through a flexible configuration file to obtain hourly gridded emissions.

Emission data library

- Multiple global and regional emission inventories
- **Online emissions:** \bullet
- Biogenic (MEGAN), lightning, ocean
- Spanish bottom- up \bullet emission inventory (street level emissions)

emep TNO innovation for life (...)

Conservative regridding

- **User-defined grid:**
- Regular lat-lon
- Rotated lat-lon
- LCC
- Masking and scaling factors to combine and update emission inventories

Vertical, temporal, speciation

Barcelona

Supercomputing Center

ntro Nacional de Supercompu

EXCELENCIA

SEVERO

Vertical profiles:

- Point sources, biomass burning, air traffic

Temporal profiles: •

- Monthly, weekly and daily factors per sector

VOC and PM2.5 speciation:

- CB05, SAPRC99, AERO5, AERO6

HERMESv3.0 Configuration for ICAP

Barcelona Supercomputing Center Centro Nacional de Supercomputación

EI	Sector	Year	Pollutants	Vertical	Temporal			
GFASv1.2			$ac hc^{(*)} sa^{2}$	Plume top = Sofiev et al. (2012)				
Kaiser et al.	Biomass burning	2015	$nm^{25}c^{2}h6s$	Distribution=50 % top	Daily			
(2012)			pm25,c2n05	50% uniform below				
	oporav			218-724 m				
	energy			(Bieser et al., 2011)				
	inductor			72-292 m	Manthly			
HTAPv2.2	maustry			(Bieser et al., 2011)	iviontnly			
Janssens-	residential			First layer				
Maenhout et	nhout et transport		oc,bc,so2,	First layer				
al. (2015)	air_lto	2010	pm25,pm10	0 – 1 km				
	air_cds			1 – 9 km				
	air_crs			9 – 12 km	Yearly			
	ships			First layer	(monthly			
Wiedinmyer	Residential trash			Einst James	nat prome)			
el al. (2014)	burning			First layer				
MOZART								
Horowitz et	Ocean	2000	c2h6s	First layer	Monthly			
al. (2013)								
(*) Scaling facto	ors applied: bc \rightarrow 6	5.1 and	oc → 3.1 (Rém	ny et al., 2017)				

Residential waste burning

EXCELENCIA.

SEVERO

Residential waste burning emissions have a significant contribution to **global OC**. These emissions are mainly occurring in **developing and poor countries**

species	open waste burning	total reported anthropogenic	ref
ammonia (NH ₃)	1.1 Tg	47 Tg	HTAP v2 for 2008^{c}
sulfur dioxide (SO ₂)	486 Gg	109 Tg	HTAP v2 for 2008^{c}
nitrogen oxides (NO _x as NO)	3.6 Tg	113 Tg	HTAP v2 for 2008 ^{<i>c</i>}
PM _{2.5}	10 Tg	34 Tg	HTAP v2 for 2008^{c}
PM ₁₀	12 Tg	51 Tg	HTAP v2 for 2008^{c}
BC	632 Gg	5.5 Tg	HTAP v2 for 2008^{c}
OC	5.1 Tg	12 Tg	HTAP v2 for 2008^{c}

Wiedinmyer et al. (2014)

For this sector, PM2.5-BC-OC accounts for 42.7% of total PM2.5. All PM2.5-BC-OC is considered PMFINE

Natural aerosol emissions

- Sea-salt: Jaeglé et al. (2011) wind and sst
- Dust: source location based on MODIS DB, vertical flux scaled with the topographic source of Ginoux 2001

Frequency of Occurence DoD > 0.2

Natural aerosol emissions

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Frequency of Occurence DoD > 0.2

NMMB original (~Maticorena based scheme) GOCART scheme New Kok scheme (Kok et al., 2014)

$$U * t = \frac{U * ts}{feff} \qquad feff = 1 - \frac{\ln(\frac{z0}{z0s})}{\ln(0.7(X/z0s)^{0.8})}$$

z0 based on satellite static roughness + monthly vegetation (LAI) from MODIS

AOD Evaluation 2015

MODIS C6 Level 3

0.8 07

0.6

0.5

0.4

0.3

0.25

0.2

0.15

0.1

0.08

0.06

0.04

0.02

• EXCELENCIA Barcelona SEVERO OCHOA Supercomputing Center Centro Nacional de Supercomputación

MONARCH Clear Sky

160°W 120°W 80°W 40°W 40°F 80°E 120°E 160°E 0.

NMMB-MONARCH-b015 AOD550 2015 MAM

NMMB-MONARCH-b015 AOD550 2015 MAM

AOD Evaluation 2015

• EXCELENCIA SEVERO OCHOA Supercomputing Centro Nacional de Supercomputación

MODIS/Terra-Aqua AOD550 Collection 6 Level 3

MODIS C6 Level 3

NMMB-MONARCH-b015 AOD550 2015 JJA 80°N 60°N 40°N 20°N 0' 20°5 40°S 60°S 80°5 160°W 120°W 80°W 40°W 0° 40°E 80°E 120°E 160°E

0.5

0.4

0.3

0.25

0.2

0.15

0.08 40*

0.06

0.04

0.02

603

80

160°W 120°W 80°W

MONARCH All Sky

NMMB-MONARCH-b015 AOD550

40°E 80°E

40°W 0

13

0.1

0.08

0.04

0.02

10

120°E 160°E

AOD components

Barcelona Supercomputing Center Centro Nacional de Supercomputación

AOD Evaluation 2015

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Dust Atlantic Transport

Capo_Verde AERONET - NAfrica (Ion =-22.94 lat = 16.73 alt = 60)

• EXCELENCIA

SEVERO OCHOA

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

Europe

Lille AERONET - Europe (Ion =3.14 lat = 50.61 alt = 60)

EXCELENCIA. SEVERO OCHOA

Barcelona Supercompu<u>ting</u>

Centro Nacional de Supercomputación

Center

BSC

Biomass Burning

Singapore AERONET - EAsia (Ion =103.78 lat = 1.3 alt = 30)

Chiang_Mai_Met_Sta AERONET - EAsia (Ion =98.97 lat = 18.77 alt = 312)

EXCELENCIA. SEVERO OCHOA

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

China

Beijing-CAMS AERONET - EAsia (Ion =116.32 lat = 39.93 alt = 106)

EXCELENCIA. SEVERO OCHOA

Barcelona Supercomputing

Centro Nacional de Supercomputación

Center

BSC

Intensive Optical Properties in MONARCH

Agoufou (lev 1.5 - screened); lon: -1.479, lat: 15.345, h (m): 305.000

•

Barcelona

Supercomputing Center

Centro Nacional de Supercomputación

EXCELENCIA

SEVERO

Barcelona Supercomputing Center Centro Nacional de Supercomputación

- > Testing new observational datasets (MODIS coarse DB, IASI dust AOD)
- Vertical observational constraint (assimilation of extinction profiles)
- Multi-scale capability (coping with a limited area domain and rotated coordinate system, e.g. used by the BDFC)
- > Adapting the DA scheme to model developments (MONARCH v2.0)

MODIS Deep Blue coarse DoD

Assimilation of 0.1x0.1 deg MODIS Deep Blue coarse DOD based on Ginoux et al., 2012

First assimilation tests with MONARCH at 0.3x0.3 deg resolution

Error estimates: collocated comparison of DOD over N Africa (5 to 35N,-20 to 60E) with AERONET data between 2003 and 2015

Assimilation of MODIS coarse Deep Blue

Feedback from assimilation increments

EXCELENCIA. SEVERO OCHOA Barcelona Supercomputing Center Centro Nacional de Supercomputación

23

ACTRIS-2 project Joint Research Activity on DA

Evaluating the potential of ACTRIS-2 data for assimilation through pilot dust case studies

•]

Barcelona

Supercomputing Center

Centro Nacional de Supercomputación

BSC

EXCELENCIA.

SEVERO

Multi-wavelength Mie-Raman lidar profile observations provided by the University of Lille for the M'bour site outside Dakar

ACTRIS-2 project Joint Research Activity on DA Barcelona (BSC Supercomputing Center Centro Nacional de Supercomputación

Evaluating the potential of ACTRIS-2 data for assimilation through pilot dust case studies

Observational impact through the whole assimilation window

• EXCELENCIA

SEVERO

Case Study ESA Climate Change Initiative

EXCELENCIA

SEVERO

•

IASI dust reanalyses (MetOp-A IASI in the thermal IR)

Dust AOD (550nm), DA Simulation (IMARS) March 2015

Dust AOD (550nm), DA Simulation (LMD) March 2015

Level 3 mineral dust AOD datasets

- retrieved from MetOp-A IASI in the thermal IR
- uncertainty estimation ٠
- converted to 550nm
- sub-daily set mineral dust retrievals (6h)
- spatially aggregated (1x1) •
- screened for AOD (>0.15)

4 different retrieval algorithms

- ULB v7, Universite Libre de Bruxelles
- MAPIR v3.5, BIRA-IASB
- LMD v2.1 •
- IMARS v5.2, DLR

Case Study ESA Climate Change Initiative

EXCELENCIA SEVERO OCHOA

•)

Barcelona Supercomputing Center

Centro Nacional de Supercor

Case Study ESA Climate Change Initiative

Barcelona Supercomputing Center Centro Nacional de Supercomputación

WMO Dust Regional Centers

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Extracted from Ginoux et al. (2012, Rev. Geophys.)

WMO Dust Centers in BCN

SDS-WAS. North Africa, Middle East and Europe **Regional Center - Research** Started in 2010

http://sds-was.aemet.es

Barcelona Dust Forecast Center - Operations First specialized WMO Center for mineral dust prediction. Started in 2014

http://dust.aemet.es

GOBIERNO DE ESPAÑA

Barcelona

Center

DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

MINISTERIO

Supercomputing

Centro Nacional de Supercomputación

EXCELENCIA

SEVERO

SDS-WAS NAMEE: Dust observations

EXCELENCIA. SEVERO OCHOA Barcelona Supercomputing Center Centro Nacional de Supercomputación

DEBRA-Dust

by Enric Terradellas - last modified Mar 22, 2017 03:30 PM

image 3-day loop 4-week archive

EUMETSAT Download full image

Meteosat IODC Dust, 2017-06-21 13:00:00 UTC

http://sds-was.aemet.es/31

SDS-WAS NAMEE: Towards NRT Evaluation provides

Extinction profiles at 12UTC available in a window of 24 hours

3 ceilometers 1 lidar

SDS-WAS MODELS

Barcelona

Center

Supercomputing

- BSC-DREAM8b
- NMMB/BSC-Dust
- CAMS
- DREAM8-NMME
-

2016040512_3H_BSC_DREAM8B_profiles { dimensions: time = 73 ;

Data format Exchange operational protocol includes 72 hours forecasts

Ion:long_name = "Iongitude"; Ion:units = "positive degrees East"; double lat(station); lat:long_name = "latitude"; lat:units = "positive degrees North"; char station_name(station, strlen);

http://sds-was.aemet.es/projects-research/evaluation-of-model-derived-dust-vertical-profiles

• EXCELENCIA

SEVERO

SDS-WAS NAMEE: NRT Evaluation profiles

Atlantic dust event: 9 - 12 December 2016

• EXCELENCIA.

SEVERO

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Supercomputación

SDS-WAS NAMEE: Daily Dust Forecasts

• EXCELENCIA.

Dust prediction models provide 72 hours (at 3-hourly basis) of dust forecast (AOD at 550nm and surface concentration) covering NAMEE

MODEL	RUN TIME	DOMAIN	DATA ASSIMILATION
BSC-DREAM8b	12	Regional	Νο
CAMS ECMWF	00	Global	MODIS AOD
DREAM8-NMME	00	Regional	CAMS analysis
NMMB/BSC-Dust	00	Regional	No
MetUM	12	Global	MODIS AOD
GEOS-5	00	Global	MODIS reflectances
NGAC	00	Global	No
RegCM4 EMA	00	Global	No
DREAMABOL	12	Regional	No
WRF-CHEM NOA	12	Regional	No
SILAM	12	Regional	No
LOTOS-EUROS	12	Regional	No

http://sds-was.aemet.es/ ³⁴

ICAP-MME vs SDS-WAS: Results 2016

Barcelona Supercomputing Center Centro Nacional de Supercomputación

SDS-WAS Median

ICAP-MME Mean

SDS-WAS Mean

ICAP-MME vs SDS-WAS: Results 2016

DOD AERONET Direct-sun Version 3 Level 1.5 comparison

Statistics ICAP-MME Mean

	NDATA	MEAN_obs	MEAN_model	SD_obs	SD_model	COR	RMSE	MB	MNBE	MNGE	MFB	MFE
NAfrica	4137	0.43	0.43	0.36	0.33	0.79	0.22	0.00	0.08	0.37	0.02	0.38
Middle East	755	0.33	0.30	0.28	0.21	0.60	0.23	-0.04	-0.06	0.39	0.20	0.67
Mediterranean	4932	0.09	0.10	0.15	0.14	0.85	0.08	0.01	-0.14	0.43	1.04	1.39
all_selected_sites	10016	0.25	0.25	0.31	0.29	0.85	0.17	0.00	0.00	0.39	0.55	0.91

Statistics SDS-WAS Mean

	NDATA	MEAN_obs	MEAN_model	SD_obs	SD_model	COR	RMSE	MB	MNBE	MNGE	MFB	MFE
NAfrica	4428	0.42	0.34	0.35	0.23	0.74	0.25	-0.08	-0.08	0.36	-0.14	0.43
Middle East	802	0.34	0.30	0.28	0.23	0.38	0.29	-0.03	-0.08	0.36	0.18	0.65
Mediterranean	5279	0.09	0.08	0.15	0.12	0.84	0.08	0.00	-0.27	0.46	0.99	1.44
all_selected_sites	10716	0.24	0.20	0.31	0.22	0.80	0.19	-0.04	-0.14	0.39	0.45	0.96

Statistics SDS-WAS Median

	NDATA	MEAN_obs	MEAN_model	SD_obs	SD_model	COR	RMSE	MB	MNBE	MNGE	MFB	MFE
NAfrica	4440	0.42	0.31	0.35	0.20	0.79	0.26	-0.12	-0.20	0.36	-0.27	0.48
Middle East	809	0.33	0.26	0.28	0.14	0.64	0.23	-0.08	-0.19	0.35	0.09	0.68
Mediterranean	5293	0.09	0.07	0.15	0.11	0.86	0.08	-0.02	-0.38	0.50	0.91	1.49
all_selected_sites	10750	0.24	0.18	0.31	0.19	0.85	0.19	-0.06	-0.26	0.40	0.35	1.01

Near future Operational Updates

EXCELENCIA

SEVERO

CURRENT FORECASTING – DEVELOPED/AVAILABLE – UNDER DEVELOPMENT - PLANNED

DOMAIN	GLOBAL (ICAP)					
Model	MONARCH					
Status	QO					
Meteorology	Inline: NMMB					
Resolution	1.4x1 deg <mark>0.7x0.5 deg</mark>					
levels	24 48					
DA	LETKF					
Assimilated Obs	MODIS DT+DB (DU) MODIS DT+DB (ALL)					
Aerosol Species	DU, SS, BC, POA, SOA bio, SOA anthro, SU, NI					
Gas phase chemistry	CBM-IV CB05 ONLINE and CLIMATOLOGY					
Emissions	HERMES 3.0 (HTAP v2) MEGAN ONLINE					
Bio. Burn. Emissions	GFAS NRT					

2017: New Marenostrum up in July Full model into ICAP ensemble

Scalability tests and setting final resolution

- Further tuning of
- emissions by region,
- wet scavenging
- optical properties

2018 Q2: Data assimilation with full aerosol model Autosubmit workflow

Regional forecasts for Europe and Spain