

NAAPS Model Update from NRL Part 1

Edward Hyer

NRL- Monterey

In This Talk

- 1. NAAPS v1.4: major prediction upgrade
- 2. Data Assimilation Upgrades:
 - 1. LEO Aerosol constellation
 - 2. GEO aerosol assimilation
- 3. Other work

NAAPS Version 1.4

- NAAPS v1.4: **Operational 11/1/2016**
- NAAPS updates in ICAP research run now implemented in operational model
 - Primary and Secondary organic aerosols now included!
 - Significant reduction in regional biases, improved forecast skill
 - This represents a huge upgrade for the OPS NAAPS

Updated fine-mode aerosol gives improved model skill in every region of the globe!

NAAPS 1.3 vs AERONET

- Winter 2015: NAAPS v1.3
- OPS NAAPS and research NAAPS have widely divergent statistics
 - OPS NAAPS significantly worse that Research NAAPS in many areas
 - Note: OPS is at 1/3 degree, research is at 1-degree

Winter 2015-2016

Research much better than

OPS NAAPS v1.3

NAAPS 1.4 vs AERONET

- Winter 2016: NAAPS v1.4 with upgraded sources and data assimilation
- OPS NAAPS and research NAAPS much more consistent
 - OPS NAAPS outperforms Research NAAPS in almost every area
 - Note: OPS is at 1/3 degree, research is at 1-degree

Winter 2015-2016
OPS NAAPS v1.4 (1/3°) beating research NAAPS (1°)

LEO Constellation for Aerosol

Complete polar constellation: MODIS+VIIRS+AVHRR

• After FY17 transitions complete, global land (1x/day) and ocean (2x/day) assured

		`		,										Calend	dar Year				7					
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
MODIS-Terra									Operati	ional at I	Navy FN	MOC fr	om 2008	3	Operat	ional at I	Navy FN	MOC fr	om 2008					
MODIS-Aqua									Operati	ional at I	Navy FN	MOC fr	om 2008	3	Operat	ional at I	Navy FN	MOC fr	om 2008					
Suomi NPP VIIRS																		Operati	onal (FI	IMOC) f	rom 201	L 7	2023 ar	nd beyon
JPSS-1 VIIRS																		launch	17Q4				2030 ar	nd beyon
MetOp AVHRR																Backup		Operati	onal fro	m 2017		MetOp-	SG sche	ed. 2021
Himawari-8															launch	14Q4			operati	onal fro	m 2018]
Himawari-9																	launch	16Q4	planne	d on-orb	it stora	ge		to 2029
GOES-R																								to 2025
GOES-S																			planne	d on-orb	it stora	ge		to 2028
Meteosat 3G																						to "at le	east the	late 2030
Sentinel-3																Launch	Q4	operati	onal life	time 7.5	years			
CALIOP																								
ISS CATS																Launch	"6 mon	ths - 3 y	ears" lif	etime				
EarthCare ATLID		·										·		_			, and the second	Launch	18Q4	3 year o	lesign lif	fetime		

Complete polar constellation: MODIS+VIIRS+AVHRR

- After this year, global land (1x/day) and ocean (2x/day) assured even without MODIS
- Map: Mean global AOD
 - 10/15 11/1/2016 (16 days)

NAAPS operational obs

- 2009: MODIS over ocean
- 2012: MODIS ocean+dark land
- 2016: MODIS global (C6)
- 2017: MODIS + AVHRR ACSPO (ocean only)
- 2017: MODIS+AVHRR+VIIRS

- How important is sub-daily variation in EO/visibility prediction?
- How much variation in current NAAPS model compared to obs?
- An example from Korea:
 - April-June 2016
 - Lat/Lon of 7 AERONET stations
 - For each date for each station:
 - NAAPS AOD output at 0Z and 6Z
 - AERONET AOD nearest to 0Z and 6Z
 - GOCI satellite AOD (Yonsei) nearest to 0Z and 6Z

For AERONET retrieved AOD, AM-PM difference exceeds 20% of mean for 61% of cases!

- How important is sub-daily variation in EO/visibility prediction?
- How much variation in current NAAPS model compared to obs?
- An example from Korea:
 - April-June 2016
 - Lat/Lon of 7 AERONET stations
 - For each date for each station:
 - NAAPS AOD output at 0Z and 6Z
 - AERONET AOD nearest to 0Z and 6Z
 - GOCI satellite AOD (Yonsei) nearest to 0Z and 6Z

For AERONET retrieved AOD, AM-PM difference exceeds 20% of mean for 61% of cases!

For GOCI satellite data, AM-PM difference exceeds 20% of mean for 75% of cases!

- How important is sub-daily variation in EO/visibility prediction?
- How much variation in current NAAPS model compared to obs?
- An example from Korea:

For AERONET retrieved AOD, AM-PM difference exceeds 20% of mean for 61% of cases!

For GOCI satellite data, AM-PM difference exceeds 20% of mean for 75% of cases!

For NAAPS model output, AM-PM difference exceeds 20% of mean for 54% of cases (figure at right)

- Predict 1500LST aerosol based on 0900LST: r²=0.54
- Predict 1500LST aerosol based on T-1day: r²=0.51

- How do we expect the model to respond to more frequent observations for assimilation?
- Forecast error does not grow linearly with forecast lead time
- nor shrink linearly with additional obs assimilated.

Error can be linearly reduced by shrinking time-sincelast-ob

U.S. NAVAL GEO Observations: How Often?

Geostationary sensors: major advantage for dodging clouds!

May-July 2016 Fraction of days with valid GOCI AOD

<0.1	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00

Forward Focus for operational NAAPS

- Pathway to geostationary AOD assimilation
 - Change AOD DA cycle from 6 hours to 3 hours
 - This will pay dividends with MODIS too
 - Settle on a transition candidate AOD product
 - Currently not clear what products will be operationally available to Navy
- FLAMBE
 - GOES-R will replace GOES-13 in November
 - GOES-R, Himawari fire products not yet available, much less characterized
 - Will FLAMBE switch to MODIS-only?
 - Regional tuning for FLAMBE also needed in operational model
- Model I/O streamlining
 - Convert model to use NetCDF natively
 - NetCDF model products for science users
 - Machine-to-machine data delivery
 — the demand is now there!
- Next: Part 2: Juli Rubin (NRL-DC) on NAAPS ensemble, EnKF data assimilation, and more!

DA Upgrade: MODIS Collection 6

- NAAPS v1.4 transition also included a big upgrade in data assimilation
 - Now including MODIS Deep Blue over bright desert!
 - Upgraded MODIS base data from Collection 5 to Collection 6
 - Better handling of MODIS-Terra degradation
 - Improved cloud masking using cloud proximity (distance-tocloud)

Addition of high-quality observations improves NAAPS analysis!

VIIRS Assimilation Testing

NAAPS assimilation testing of VIIRS **Enterprise** Aerosol

- Global VIIRS data processed 201505-201507 (90 days)
- NAAPS analysis results: VIIRS+MODIS better than MODIS only
- Global correlation improved from r^2 =0.68 (MODIS-only) to r^2 =0.74 (MODIS+VIIRS)
- Global RMSE decreased from *RMSE*=0.12 (MODIS-only) to *RMSE*=0.11 (MODIS+VIIRS)
- Correlation (r^2) vs AERONET L2.0 increased at 132 of 208 stations
 - Colored symbols on map indicate r^2 difference > 0.05
- Site-by-site RMSE more mixed: 199 sites with \triangle RMSE > 0.02:
 - RMSE better at 111/199, worse at 88/199
- Better results can likely be achieved with additional filtering
- VIIRS Enterprise is a vastly upgraded product from initial NOAA IDPS Aerosol Product
- Not the only choice for VIIRS: NASA SIPS should now be producing Dark Target and Deep Blue products from VIIRS