

NRL Aerosol Forecasting Update Part 2: Research and Development

ICAP 9th Working Group Meeting
Lille, France
June 26-28, 2016

James Campbell

2017 Navy Aerosol Community

Monterey (Marine Meteorology):

Anthony Bucholtz Radiative measurements, tactical decision aids Elizabeth Reid

Lidar studies, cirrus radiation

Satellite data quality, biomass burning **Edward Hyer**

Mayra Oyola (ASEE) Dust radiation

Statistical post-processing Jim Peak

Meteorology, biomass burning, remote sensing Peng Xian **Dave Peterson**

Jeffrey Reid

Mindy Surratt

Annette Walker

Doug Westphal

Deployments and analysis

Microphysics, radiation, observability

Satellite and model output processing

Dust sources, operational outreach

Emeritus

Reanalysis, multi-model ensemble

Washington, DC (Remote Sensing):

Maggie Anguelova Satellite retrievals

David Kuhl Data assimilation for NWP, hybrid methods

Karl Hoppel Data assimilation for NWP

Juli I. Rubin Data assimilation and ensemble modeling

Peter Caffrey Aerosol microphysics, modeling

Aerosol measurements **Ivan Savelyev**

> Extensive collaborations with our partners: Jianglong Zhang's group (UND), ONR funded MURI led by Steve Miller at CSU, Bob Holz and CIMSS (U of Wisconsin)...

Navy Aerosol Modeling: From the global to the mesoscale

Overview of Navy Aerosol Prediction:

Global Modeling: Navy Aerosol Analysis Prediction System

NAAPS Operational Data Assimilation: NAVDAS-AOD

NAAPS Reanalysis Data Assimilation: NAVDAS-AOD

> **FNAAPS** Data Assimilation: **EAKF**

ICAP Multi-Model Ensemble

Mesoscale Modeling: Coupled Ocean Atmosphere Mesoscale Prediction System

> COAMPS Operational Dust

COAMPS NAAPS

MURI: Littoral 7one Prediction

Inline Aerosol Prediction: Navy Global **Environment Model**

> NAVGEM with aerosol

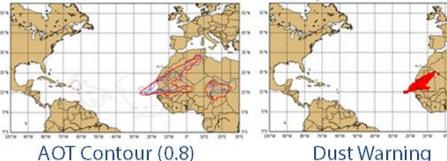
Global Aerosol Prediction: The power in ensembles

Multi-Model Ensemble (Peng Xian's Talk)

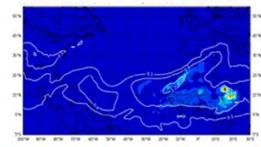
ICAP MME

- Valuable collaboration between forecast centers
- **Independence across** ensemble members
- Top performer

Provides reliable forecast guidance and serves as a good reference dataset (e.g. TIGGE NWP)


Single Model Ensemble

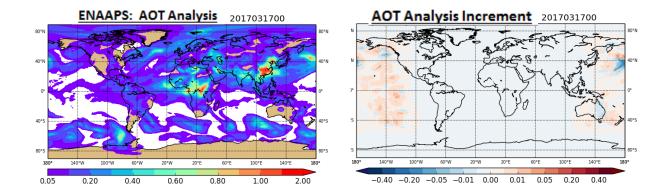
Ensemble NAAPS (ENAAPS)

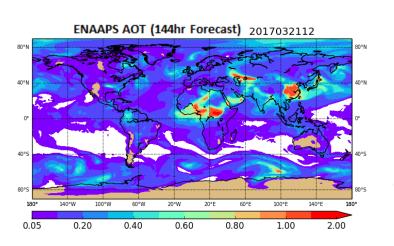

- 20-80 ensemble members
- **EAKF** data assimilation
- **Moving towards** operations.

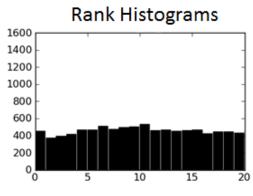
Using observations more effectively for data assimilation

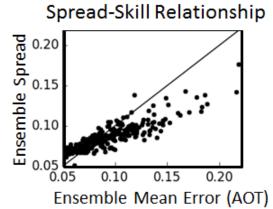
Probabilistic Products

Dust Warning

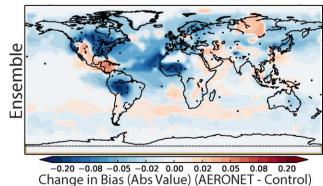

Ensemble Standard Deviation

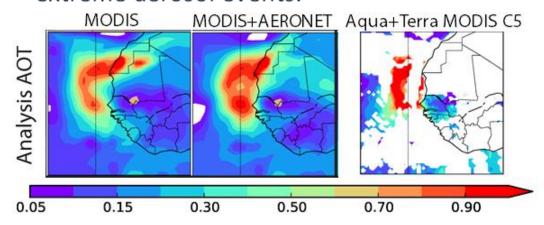

Navy Global Aerosol Prediction: Ensemble NAAPS (ENAAPS)


Recent Developments:

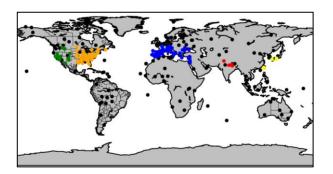

- ENAAPS-DART is moving towards operational implementation.
- Near real time cycling on Navy DSRC machines.
- Cycles with 80 ensemble members for assimilation

Ongoing efforts include ensemble
 Forecasts use 20 member subset.
 Verification, ensemble distribution/spread.

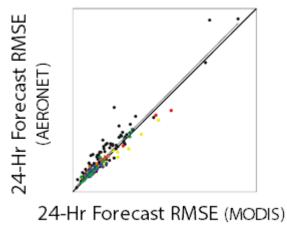



Navy Global Aerosol Prediction: Ensemble NAAPS (ENAAPS)

Improved Data Assimilation Capability:


- Flow-dependent corrections.
- Ideal for assimilating sparse aerosol information (e.g. in-situ, LIDAR).
- AERONET is helpful for capturing extreme aerosol events.

Error reductions relative to a no DA control for AERONET assimilation.



 AERONET may serve as a useful back-up network for assimilation.

Near Real Time AERONET (v3, L1.5) will be needed.

Navy Aerosol Modeling: From the global to the mesoscale

Overview of Navy Aerosol Prediction:

Global Modeling: Navy Aerosol Analysis Prediction System

NAAPS Operational

<u>Data Assimilation:</u>

NAVDAS-AOD

NAAPS Reanalysis

Data Assimilation:
NAVDAS-AOD

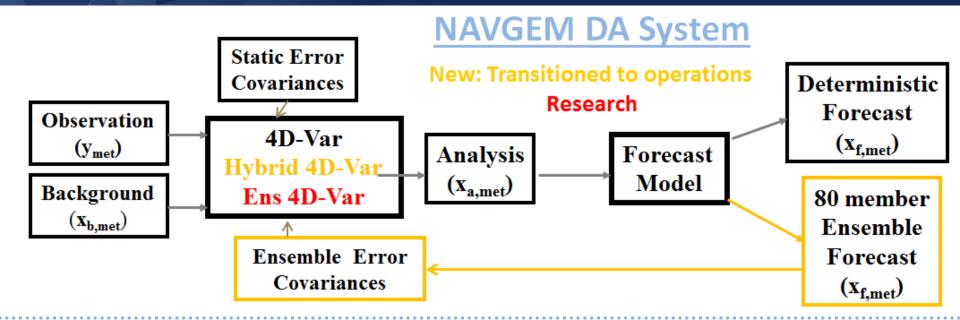
ENAAPS

Data Assimilation:
EAKF

ICAP Multi-Model Ensemble Mesoscale Modeling: Coupled Ocean Atmosphere Mesoscale Prediction System

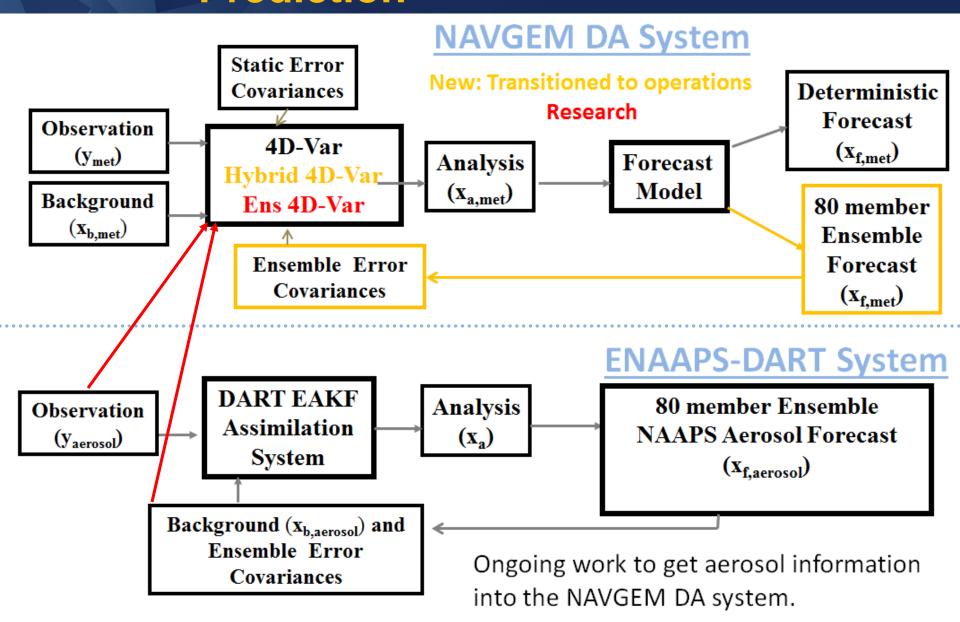
COAMPS
Operational Dust

COAMPS NAAPS


MURI: Littoral Zone Prediction

Inline Aerosol Prediction: Navy Global Environment Model

NAVGEM with aerosol


ENAAPS and Numerical Weather **Prediction**

- Hybrid 4D-Var Data Assimilation has transitioned to operations as part of NAVGEM 1.4.
- Having an operational 80 member NAVGEM forecast is key for getting ENAAPS to operations.
- There is ongoing research into an Ens 4D-Var (no TLM/adjoint) that is a joint effort between NRL Monterey and DC.

ENAAPS and Numerical Weather **Prediction**

Navy Aerosol Modeling: From the global to the mesoscale

Overview of Navy Aerosol Prediction:

Global Modeling: Navy Aerosol Analysis Prediction System

NAAPS Operational

<u>Data Assimilation:</u>

<u>NAVDAS-AOD</u>

NAAPS Reanalysis

Data Assimilation:

NAVDAS-AOD

ENAAPS

Data Assimilation:
EAKF

ICAP Multi-Model Ensemble Mesoscale Modeling: Coupled Ocean Atmosphere Mesoscale Prediction System

COAMPS
Operational Dust

COAMPS NAAPS

MURI: Littoral Zone Prediction

Inline Aerosol Prediction: Navy Global Environment Model

NAVGEM with aerosol

Navy Mesoscale Aerosol Prediction: MURI Ensemble Data Assimilation

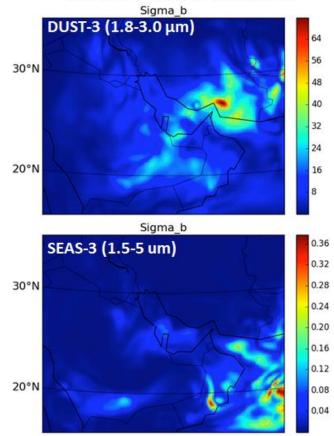
Multidisciplinary University Research Initiatives (MURI) program funded by ONR:

> Improve forecasting of aerosol in the complex littoral environment (CSU)

Goal: Produce high resolution 3D analysis of aerosol fields/uncertainty.

Approach: Coupled atmosphere-aerosol-chemistry ensemble

Models: WRF-Chem, CSU RAMS.


DA: EnKF (Maximum Likelihood Ensemble Filter)

Challenge: Can data assimilation exploit environmental parameter correlations to overcome observational shortfalls and provide a high-resolution 3D analysis of aerosol fields?

Strategy:

- Use probabilistic forecasts to get aerosol vertical distribution since AOT is 2D.
- 2. For adequate high-resolution aerosol data assimilation need additional information about vertical distribution.
- 3. Assimilate MW all-sky satellite radiance observations
- 4. All-sky primarily impacts clouds, but through coupled atmosphere-aerosol ensemble forecast error correlation it also impacts aerosol 3D fields.

6-hour Forecast Uncertainty at 850 hPa WRF-Chem + GOCART (32 ensembles) Valid 0600 UTC on 4 Aug 2016

Results from Milija Zupanski-CIRA

Navy Aerosol Modeling: From the global to the mesoscale

Overview of Navy Aerosol Prediction:

Global Modeling: Navy Aerosol Analysis Prediction System

NAAPS Operational Data Assimilation:

NAVDAS-AOD

NAAPS Reanalysis

Data Assimilation: NAVDAS-AOD

ENAAPS

Data Assimilation:

EAKF

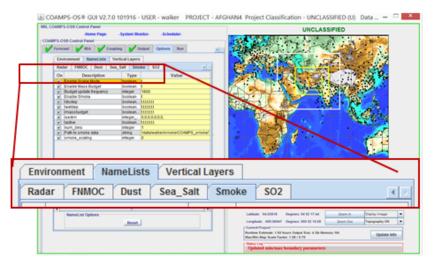
ICAP Multi-Model Ensemble Mesoscale Modeling: Coupled Ocean Atmosphere Mesoscale Prediction System

COAMPS
Operational Dust

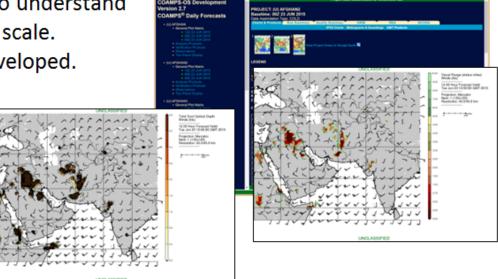
COAMPS NAAPS

MURI: Littoral Zone Prediction

Inline Aerosol Prediction: Navy Global Environment Model


NAVGEM with aerosol

COAMPS with NAAPS Aerosol Species


Support for new COAMPS v5.6 aerosol prediction module in COAMPS-OS

- COAMPS with dust, operational since 2001.
- COAMPS now supports all 4 NAAPS aerosol species (dust, smoke, sea salt, SO₂).
- Allows for NAAPS as COAMPS boundary conditions.
- NAAPS and COAMPS can be used together to understand aerosol from the large scale to a much finer scale.
- New aerosol visualization products were developed.

New option tabs in COAMPS GUI for each aerosol species:

Dust, Smoke, Sea Salt, SO₂

are the primary graphics products.

Ongoing Efforts in Global Modeling

Working towards efficient processing:

Forecast Efficiency with Inter-dependent Tasks

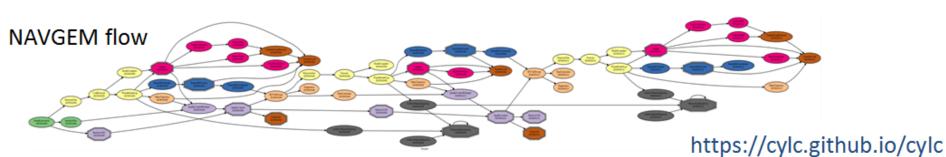
Satellite and Model
Output/Input

Workflow Management with Cylc

Setup

Obs Processing

Data Assimilation


Forecast

Ensemble

Post-Processing

Obs Sensitivity

Cleanup

Ongoing Efforts in Global Modeling

Working towards efficient processing:

Forecast Efficiency with Inter-dependent Tasks

Satellite and Model Output/Input

Geo-located Information Processing System (GeoIPSTM)

A new Python-based system for Operational and R&D processing of data with latitudes and longitudes

Generalized: The same code can be applied for all datasets (model and satellite datasets).

Extendable: Addition of new datasets, products, and sensors is straightforward.

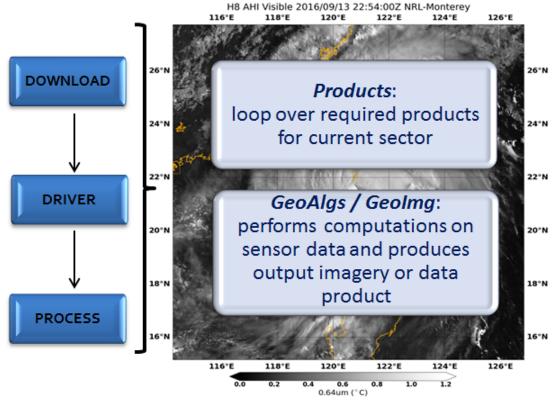
Easy to Use: Can run without knowledge of the code.

Geo-located Information Processing System (GeoIPSTM)

A new Python-based system for Operational and R&D processing of data with latitudes and longitudes

New features/versions in development:

- 1. Open-source release:


 Facilitates collaboration across
 organizations.
- **2. Data fusion:** *combine multiple datasets into a single product.*
- 3. Quantitative data output:

 currently imagery-based

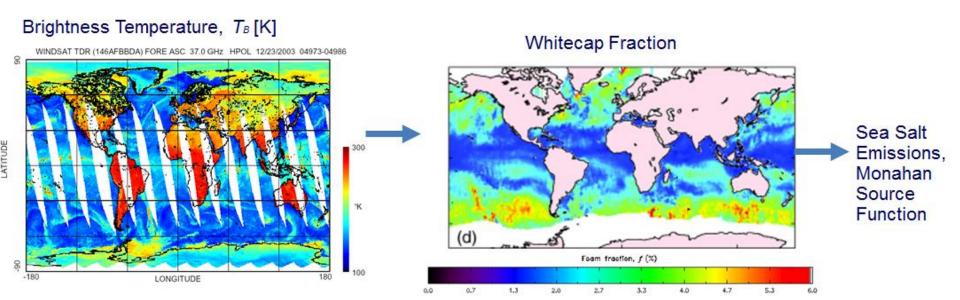
 output. New capabilities will be

 used for data ingestion into

 models/data assimilation

Super Typhoon Meranti

Satellite Retrievals of Aerosol Relevant Parameters



WindSat

- Developed by NRL Remote Sensing Division
- 11+ years and counting archive of global brightness temperatures

WindSat and GMI combined to improve spatial coverage, retrievals were calibrated to remove bias.

Anguelova et al., 2013

Navy Aerosol Summary

- There are several lines of development/research for Navy aerosol prediction from the global (NAAPS/ENAAPS) to the mesoscale (COAMPS/MURI).
- We see ensembles as an important part of aerosol prediction moving forward, in the continued collaboration through the ICAP-MME and also through ENAAPS development and ongoing littoral zone work.
- ENAAPS is moving towards operations, is now capable of NRT forecasts.
- Forecast efficiency in the runs themselves, I/O, and visualization are an important focus (Cylc implementation, Netcdf, GeoIPS processing).
- Expansion of the Navy aerosol community to DC, Remote Sensing division and other university partners has enabled new research and development with remote sensing products and data assimilation for aerosol/NWP.