

AERONET Version 3 Database Update

David Giles^{1,2}, Brent Holben², Alexander Smirnov^{1,2}, Thomas Eck^{2,3}, Ilya Slutsker^{1,2}, Mikhail Sorokin^{1,2}, Joel Schafer^{1,2}, and Aliaksandr Sinyuk^{1,2}

¹ Science Systems and Applications, Inc.
 ² NASA Goddard Space Flight Center
 ³ Universities Space Research Association

9th International Cooperative for Aerosol Prediction (ICAP) Working Group Meeting 27 June 2017 University of Lille, Lille, France

Outline

- Higher Quality NRT AERONET Products
- Cloud Screening
- Quality Controls
- Quality Assurance
- V3 Results
- Summary

http://aeronet.gsfc.nasa.gov

AERONET Aerosol Robotic Network-Over Twenty Years of Observations and Research

The AERONET program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and has been expanded by collaborators from international agencies, institutes, universities, individual scientists and partners.

AERONET provides a long-term, continuous public database of aerosol optical, microphysical, and radiative properties for aerosol research and characterization, validation of satellite measurements, and synergism with other databases.

- >7000 citations
- >450 sites
- Over 90 countries and territories
- http://aeronet.gsfc.nasa.gov

Growing Need for Higher Quality NRT AERONET Data

- Satellite evaluation
 - VIIRS, MODIS, MISR, OMI, GOES, Himawari-8, Sentinel 3, GOCI
- Data synergism
 - MPLNET, SPARTANS, GreenNet
- Aerosol forecast models and reanalysis
 ICAP, GOCART, NAAPS, MERRA-2
- Meteorological models
 NCEP, ECMWF, GEOS-5, UKMET
- Field Campaign Support
 - KORUS-AQ, ORACLES, FIREX, CAMPex

AERONET Version 3: AOD

- <u>V3 Level 1.0:</u> Unscreened data (NRT)
 - Applies new temperature characterizations
 - Applies NO2 OMI L3 climatology (2004-2013)
 - Applies updated absorption coefficients (Literature/HITRAN)
- <u>V3 Level 1.5</u>: Based on Level 1.0 and uses new automatic quality controls (NRT)
 - Cloud Screening
 - Improves removal of optically thin cirrus contamination
 - Preserves more highly variable smoke
 - Compares well to Version 2 Level 2
 - <u>Quality Controls</u>
 - Removes sensor temperature artifacts
 - Removes AOD affected by solar eclipses
 - Removes AOD impacted by window obstructions
 - Removes AOD with poor spectral dependence
- <u>V3 Level 2.0</u>: Based on Level 1.5 with pre- and postcalibration applied
 - Significantly improves timeliness of Level 2.0 data availability
 - Applies an <u>objective</u> removal scheme
 - Manual analysis not anticipated

AERONET V3: Spectral Temperature Characterization

V2 Temperature Correction

V3 Temperature Correction

V2 vs. V3 Cloud Screening

Algorithm/Parameter	Version 2	Version 3		
Very High AOD Restoration	N/A	τ870 >0.5; α675-1020>1.2 or α870-1020>1.3, restore if eliminated by cloud screening		
Air Mass Range	1 to 5	1 to 7		
Number of Potential Measurements	N < 3, reject day	After all checks applied, reject day if N _{remain} < MAX {3 or <10% of N}		
Triplet Criterion	All λ s; AOD range > MAX {0.02 or 0.03* τ_a }	λ=675,870,1020nm AOD range > MAX{0.01 or 0.015*τ _a }		
Angstrom Limitation	N/A	If AE less than -1.0 or AE greater than 4.0, then eliminate measurement.		
Smoothness Check	D<16	For AOD 500nm (or 440nm) $\Delta \tau_a > 0.01$ per minute, remove larger τ_a in pair. Then, the process repeats until no more removal.		

- V2: Smirnov et al. 2000, Cloud screening and quality control algorithms for the AERONET database, Rem.Sens.Env., 73, 337-349
- AERONET Version 3 AOD Algorithm Quality Control Technical Description (2017)

V2 vs. V3 Cloud Screening

Algorithm/Parameter	Version 2	Version 3		
Solar Aureole Radiance Curvature Check	N/A	Compute curvature (k) for 1020nm aureole radiances from $3.2^{\circ}-6.0^{\circ}$ ϕ . If k < $2.0E-5$, compute a slope of ln k vs ln ϕ . If slope is greater than 4.3 (empirically derived), then point is "cloud contaminated." For ALM, PP, and HYB, all τ_a points will be removed in the ±30 minutes period from sky measurement.		
Standalone Points	N/A	No data ± 1 hour of point, then reject it unless $\alpha 440$ -870nm > 1.0, then keep point		
AOD Stability Check	Same as V3	Daily Averaged AOD 500nm (or 440nm) has σ less than 0.015, then do not perform 3-Sigma Check		
3-Sigma Check	Same as V3	AOD 500nm and α 440-870nm should be within MEAN ± 3 σ ; otherwise reject point(s)		

Cloud Screening Algorithm Step Change Summary: 2 same, 4 modified, and 4 new

Level 1.5 Quality Controls

- Raw Data Checks sensor temperature, digital counts, clock shift, etc.
- Collimator consistency checks
- AOD diurnal dependence checks
- AOD spectral dependence checks
- Solar eclipse screening

AERONET Version 3 AOD Algorithm Quality Control Technical Description (2017)

Level 2.0 AOD Criteria

- Must pass the Level 1.5 criteria
- Must utilized pre-field and post-field calibration
- Temperature characterization must be applied for all visible and near-infrared channels (440-1640nm)
 No characterization for shorter wavelengths
- Once calibration assessment is complete, a 30-day pause will be made to allow the latest updates from ancillary data

**Water Vapor will automatically be raised to Level 2.0

AERONET Version 3 AOD Algorithm Quality Control Technical Description (2017)

* Only InGaAs Channels Removed: 1020nm and 1640nm

AERONET V3 L1.5: Collimator Consistency Check

* All Channels Removed: 340 to 1640nm

* All Channels Retained

AERONET V3 L1.5: AOD Diurnal Dependence

- Robust linear regression fit of AOD and cos(SZA)
 - λ(nm)=440, 675, 870, 1020 (Si), and 1640(In)
 - Slope, R², and RMS
- AM, PM, and full day evaluated
- Independent AOD DD removal only with strong thresholds for linear fit
- Dependent AOD DD removal with weaker thresholds for linear fit but other Level 1.5V flags set
- Multi-day removal (at least 3 days out of last 20)

AERONET V3 L1.5: AOD Diurnal Dependence

Only AOD 340nm data removed

AERONET V3 L1.5: AOD Spectral Dependence

- Utilize mainly 1st or 2nd order fit
 - Number of wavelengths
 - AOD magnitude
- Uses robust regression technique less influenced by outliers
- Employ iterative approach to remove outliers based on fit (fit-measurement)
- Combine with other screening techniques

AERONET Version 3 L1.5: Solar Eclipse Screening

* Uses NASA Eclipse database: http://eclipse.gsfc.nasa.gov
* AOD correction may be implemented

Indonesian Fires 2015 (Palangkaraya) – Current V2

These estimated AOD levels at mid-visible exceed (to our knowledge) any values ever reported in the published literature. This biomass-burning event in 2015 in Indonesia was the largest magnitude AOD event in terms of AOD levels ever monitored by AERONET to date, in the 24-year history of the network

Eck et al., in preparation

AERONET V2 vs. V3

Nauru, #168, 2000-2005, 2010

- New Level 1.5 AOD_{500nm} and α_{440-870nm} statistically very close to V2 Level 2.0
- Improperly filtered highly variable AODs (dominated by fine aerosols) may be restored in the V3 database
- Stable thin cirrus becomes less of an issue (less residual contamination)
- V3 L1.5 and V3 L2.0 Beta in many cases are expected to be very similar

Level	N		AOD	α			
V2 L1.0	2557	25579		0.31			
V2 L1.5	1332	13326		0.47			
V2 L2.0	937	9371		0.54			
V3 L1.5 CldScr	1023	10233		0.47			
V3 L1.5	891	7	0.06	0.52			
V3 L2.0 Beta	891	.7	0.06	0.52			
Singapore, #22, 2007-2011							
Level	N		AOD	α			
V2 L1.0	25500	(0.61	0.86			
V2 L1.5	8680		0.46	1.03			
V2 L2.0	6920	(0.35	1.20			
V3 L1.5 CldScr	6876		0.35	1.52			
V3 L1.5	6597		0.35	1.51			
V3 L2.0 Beta	6597		0.35	1.51			

AERONET Version 3 Update - Inversions

- MERRA-2 aerosol extinction profiles
- MODIS BRDF (snow and snow-free)
- Updated ASTM Standard Extraterrestrial Spectrum E-490-00a (reapproved 2006)
- Full Vector radiative transfer code
 - Successive ORDers of scattering (SORD)
 - radiation field in UV (e.g., 380 nm retrieval)
 - degree of linear depolarization

MODIS NBAR January 1-8, 2013

Forward Modelling with RT code SORD

- New publicly available polarized RT code: SORD (Successive ORDers of scattering)
- The SORD code is local to the AERONET : easy to support and further develop
- Both speed and accuracy are published in JQRST manuscript using 52 benchmarks
- Manuscript explains how to get SORD and independently reproduce all the tests

Contents lists available at ScienceDirect

ournal of uantitative pectroscopy &

Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt

Notes

Vector radiative transfer code SORD: Performance analysis and quick start guide

Sergey Korkin^{a,b,*}, Alexei Lyapustin^b, Alexander Sinyuk^{c,b}, Brent Holben^b, Alexander Kokhanovsky^{d,e}

AERONET Version 3 Update - Inversions

- Lidar and depolarization ratio products
- Estimated uncertainties (e.g., random error plus biases due uncertainty in AOD and sky radiance calibration)
- Maintain V2 inversion product QA (Holben 2006)
- NASA Supercomputers (GSFC and Ames) processing with help from Arlindo DaSilva

Expected beta V3 inversion product release starting in August 2017

AERONET

New Instrumentation/Enhancements

- Improved tracking reducing triplet variance
- Greater control over instrument measurement scenarios (e.g., Hybrid)
- Additional capabilities such as SD card storage, GPS, USB, and Zigbee
- Lunar measurements
 - 1st to 3rd quarter lunar phase (waxing to waning gibbous)
 - Processing for lunar measurements (e.g., ROLO, Tom Stone)
- Development toward attachment for CO2 measurements (Emily Wilson)
- Synergism with MPLNET, PANDORA, and in situ measurements

Cimel Sun/Sky/Lunar Radiometer

Summary and Outlook

- Higher quality NRT AOD data will be available in V3
 - Due to temperature characterization and automatic cloud screening and quality controls
- Level 2.0 utilizes Level 1.5 automatic screening and available within 30 days of post-field calibration application
- V3 inversions will utilize new radiative transfer, ancillary data sets, and provide new products

V3 AOD Level 1.0 and Level 1.5 NRT released
 V3 AOD Level 2.0 expected release: September 2017
 Beta V3 inversions expected release: August 2017

http://aeronet.gsfc.nasa.gov

V3 NRT

Aerosols and More

