

Aerosol Impact on the GEOS-5 Meteorological Analysis

Arlindo da Silva

Global Modeling and Assimilation Office NASA Goddard Space Flight Center <u>arlindo.dasilva@nasa.gov</u>

With contributions from: Jong Kim, Santha Akella, Ricardo Todling

9th ICAP Meeting, Lille, France June 26-28, 2017

Outline

- Aerosol Data Assimilation in GEOS-5
- □ The GEOS-5 Meteorological Data Assimilation
- Prescribed aerosol optical properties in the IR
- Impact of aerosols on the innovations of IR sensors
 - > AIRS, IASI, CRIS, HIRS
- Impact on SST and upper temperature analysis
- □ Impact on the assimilation system, interaction with bias correction
- Concluding remarks

GEOS-5 Model Configuration for current NRT System

GEOS-5 Data Assimilation: Standard Configuration

GEOS-5 Hybrid Data Assimilation

Remark: Ensemble analyses are not re-centered around central (top) DAS analysis.

Aerosol Analysis: Splitting

2D AOD ANALYSIS

- Observable 550 nm AOD is 2D
 - Constrains column averaged optics
 - Cannot constrain speciation or vertical distribution

 $au^a \equiv Hq^a = H\left(q^b + \delta q^a\right)$

• Analysis in observation space:

 $= \tau^b + \delta \tau^a$

GOING TO 3D CONCENTRATIONS

- Based on error covariances: $\delta q^{a} = BH^{T} \left(HBH^{T}\right)^{-1} \delta \tau^{a}$
- Using ensemble perturbations, $\delta q^a = XY^T \left(YY^T\right)^{-1} \delta \tau^a$
- NRT GEOS-5 uses Local Displacement Ensembles (LDE), in 1D

GEOS-5 Data Assimilation Experiment: Aerosol Impact on IR Sensors

NAS

Aerosols in GSI

NASA

- CRTM allows for the inclusion of (GOCART) aerosols
- The GEOS-5 GOCART aerosol species have been introduced as state variables in GSI
 - No aerosol increments for now
 - Aerosol effects included in the observation operators for AIRS, HIRS, IASI, CRIS, SEVIRI, AVHRR
- Optical properties hardwired inside CRTM
 - Inconsistent with GEOS-5 VIS channels but
 - OK for IR channels

Aerosol Contamination of GSI Radiances

CONTROL EXPERIMENT

- Aerosols fully interactive in GEOS-5
 - Standard, decoupled AOD assimilation
- Standard GSI global analysis
- Period
 - August 2016
- Resolution:
 - C360 (~25 km)

AEROSOL IMPACT EXPERIMENT

- Aerosols fully interactive in GEOS-5
 - Standard AOD assimilation
- GSI observation operators:
 - 15 GOCART species
 - Concentration
 - Effective radius
 - Optical parameters internally determined by CRTM

Non-cycling Experiment

IMPACT OF AEROSOLS ON SIMULATED BRIGHTNESS TEMPERATURE

Aerosol AOD Speciation: Aug 2016

11 **GMAO** Global Modeling and Assimilation Office

OPAC Aerosol Optical Properties

IASI Innovations

Smoky Pixels: $T_b(aer) - T_b(ctl)$

GMAO Global Modeling and Assimilation Office 18

Non-cycling Experiment

IMPACT OF AEROSOLS ON METEOROLOGICAL ANALYSIS

Cycling Experiment: July 2015 & August 2016 IMPACT OF AEROSOLS ON METEOROLOGICAL ASSIMILATION

SST: Comparison to Buoys: Aug 2016

500 hPA Anomaly Correlation

Computational Cost

Concluding Remarks

- The impact of the GEOS-5 assimilated aerosols on meteorological assimilation has been examined
 - > One way interaction: 3D aerosol concentrations impact on the CRTM calculation of IR BTs
- Larger effect over predominantly dusty pixels
- **Cooling effect of aerosols on T_b calculation leads to warming in SST analysis**
 - Nearly 1K effect on SST analysis over the Saharan dust plume
- Impact on 5-day forecast skill is negligible
- Slightly more data were accepted in the cycled experiments: HIRS, AIRS, IASI, CRIS
- SST verification against drifting buoy indicates that the aerosol experiments had slightly improved surface temperature in the tropical Atlantic
- Neural Net based approximations being investigated as a device to reduce cost
 - > Possibly a better parameterization for the variational bias correction

EXTRA SLIDES

28 **GMAO** Global Modeling and Assimilation Office

29 GMAO Global Modeling and Assimilation Office

Aerosol Observing System

Aerosol Optical Depth (AOD) is the most commonly available observable

- Vertically integrated mass weighted by extinction coefficient, summed over multiple species: *low observability*
- Available multi-spectral AOD measurements are not really measured

□ Radiance assimilation:

- Vector scattering calculations needed for UV-VIS measurements are not cheap
- Surface BRDF characterization is a challenge

□ Surface PM 2.5

- Single level
- Often plagued by representativeness

Lidar measurements provide vertical info

- Spatially coverage is poor (pencil thin)
- Attenuated backscatter again requires optical assumptions which are not directly measured
 - » New HSRL concept is promising