CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

Ed Nowottnick, John Yorks, Matt McGill, Stan Scott, Stephen Palm, Dennis Hlavka, William Hart, Patrick Selmer, Andrew Kupchock, Rebecca Pauly

NASA GMAO Collaboration:

<u>Overview</u>

- Part 1:
 - Instrument Status
 - Updates for Upcoming Level 2 Data Release
- Part 2:
 - Assimilating CATS observations in GEOS-5
- Future directions

The CATS Instrument

- The Cloud Aerosol Transport System (CATS) is a high repetition rate lidar built at NASA Goddard Space Flight Center (GSFC) designed for use on the International Space Station (ISS)
 - Intended to operate on orbit for at least 6 months, up to 3 years (almost there!)
 - The ISS provides a low cost platform for Earth science capabilities
 - 51° orbit at 405 km
 - Orbit permits the study of diurnal cloud/aerosol variability
 - Installation on the ISS permits near real time data downlinking

CATS installed on the ISS

CATS orbital coverage

CATS Instrument Status

• Early Issues:

- Laser 1 failure in March, 2015
- Seeded laser cannot be stabilized for HSRL retrievals in Mode 2
- Mode 2:
 - Current mode of operation
 - Data has been very reliable:
 - Instrument in good health
 - Signal strength and laser energy are stable
- Currently all version 1 L1B & L2 data quicklooks and data for both modes is available:
 - Online: https://cats.gsfc.nasa.gov
 - NASA Langley Distributed Active Archive Center (DAAC)

TIMELINE:

Jan 10: CATS launched on SpaceX5 Jan 22: Installed on the JEM-EF Feb 5: "1st light" with laser 1 Feb 10: 1st continuous 24-hr operation Mar 25: 1st laser 2 operations Present: near-continuous laser 2 operations

Laser: 177+ billion shots

CATS Data Products

Level 1B (most recent released version 2.07):

- Attenuated Total Backscatter at 532 and 1064 nm
- Depolarization Ratio at 1064 nm

Level 2 (most recent released version 1.05):

- Cloud Aerosol Discrimination and Type
- Cloud and Aerosol Optical Properties (e.g. extinction)

Version 2 Level 2 Aerosol Updates to Aerosol Detection and Typing

Improved Daytime Aerosol Detection

- CATS version 1 level 2 feature detection was performed at 5 km horizontal resolution for both day and night
- Due to lower signal to noise during the day, CATS detected less aerosol layers over land during the daytime

Improved Daytime Aerosol Detection

- CATS version 1 level 2 feature detection was performed at 5 km horizontal resolution for both day and night
- Due to lower signal to noise during the day, CATS detected less aerosol layers over land during the daytime
- The new version 2 level 2 feature detection algorithm uses both 5 and 60 km horizontal resolution during day and night and reports a "merged" product at 5 km

Improved Daytime Aerosol Detection

- CATS version 1 level 2 feature detection was performed at 5 km horizontal resolution for both day and night
- Due to lower signal to noise during the day, CATS detected less aerosol layers over land during the daytime
- The new version 2 level 2 feature detection algorithm uses both 5 and 60 km horizontal resolution during day and night and reports a "merged" product at 5 km
- The new feature detection algorithm significantly increases daytime aerosol detection frequency

Updated Cloud - Aerosol Discrimination

Updated Cloud - Aerosol Discrimination

Updated Cloud - Aerosol Discrimination

<u>CATS Version 1</u> <u>Mode 2 Aerosol</u> Typing Algorithm

Inputs:

- Feature Integrated Depolarization Ratio at 1064 nm (δ'₁₀₆₄) averaged to 5 km horizontally
- Feature Integrated Total Attenuated Backscatter at 1064 nm (γ'₁₀₆₄) averaged to 5 km horizontally
- Surface Type (for maritime)
- Feature Altitude

<u>CATS Version 2</u> <u>Mode 2 Aerosol</u> Typing Algorithm

Inputs:

- Feature Integrated Depolarization Ratio at 1064 nm (δ'₁₀₆₄) averaged to 5 km horizontally
- Feature Integrated Total Attenuated Backscatter at 1064 nm (γ'₁₀₆₄) averaged to 5 km horizontally
- Surface Type (for maritime)
- Feature Altitude
- GEOS-5 Simulated Aerosol

<u>CATS Version 2</u> <u>Mode 2 Aerosol</u> Typing Algorithm

Inputs:

- Feature Integrated Depolarization Ratio at 1064 nm (δ'₁₀₆₄) averaged to 5 km horizontally
- Feature Integrated Total Attenuated Backscatter at 1064 nm (γ'₁₀₆₄) averaged to 5 km horizontally
- Surface Type (for maritime)
- Feature Altitude
- GEOS-5 Simulated
 Aerosol

Updated Aerosol Typing: Dust Thresholds & Striping

- Reduction in dust & dust mixture depolarization ratio thresholds based on aerosol type comparisons with CALIPSO over south Asia
- Incorporation of a horizontal persistence test to reduce type "striping" in aerosol layers

<u>CATS Version 2</u> <u>Mode 2 Aerosol</u> Typing Algorithm

Inputs:

- Feature Integrated Depolarization Ratio at 1064 nm (δ'₁₀₆₄) averaged to 5 km horizontally
- Feature Integrated Total Attenuated Backscatter at 1064 nm (γ'₁₀₆₄) averaged to 5 km horizontally
- Surface Type (for maritime)
- Feature Altitude
- GEOS-5 Simulated Aerosol

Updated Aerosol Typing: Incorporation of GEOS-5

CATS August 2015 Polluted Continental AOT

Utilization of GEOS-5 simulated aerosols to help identify polluted continental vs. smoke aerosol layers to permit polluted continental classification over water

Summary: Part 1

- CATS continues to operate on the ISS, providing high quality observations of attenuated total backscatter and depolarization ratio at 1064 nm.
- CATS NRT data provides a unique opportunity for several applications:
 - Air quality warnings
 - Injection heights for hazardous event forecasting (e.g. volcanoes)
 - Assimilation into operational aerosol transport models

Future Plans:

- Summer 2017 (currently reprocessing):
 - Release an improved version of L1B data (better geolocation and digital elevation map)
 - Release version 2 L2 data:
 - Improved feature detection during daytime
 - Refined cloud aerosol discrimination
 - Updated aerosol typing
 - Repeat for Mode 1

For more information, field campaign support, or help acquiring data, contact: Ed Nowottnick – edward.p.nowottnick@nasa.gov John Yorks – john.e.yorks@nasa.gov

Assimilating CATS Observations into GEOS-5

The NASA Goddard Earth Observing System (GEOS – 5) Model

Outputs research forecasts 4x per day (0z, 6z, 12z, 18z):

- Ensemble Mean:
 - ~12.5 km horizontal resolution, output at 25 km
 - 72 hybrid-sigma levels in the vertical
- Ensemble Members:
 - 32 members
 - ~50 km horizontal resolution
 - 72 hybrid-sigma levels in the vertical
- Aerosols:
 - Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model
 - Dust, Seasalt, Sulfate, Black, and Organic Carbon
 - Aerosol optical properties (e.g. total attenuated backscatter, extinction)
- Assimilates meteorology and aerosol optical thickness (2-D)
 - Currently, observations of aerosol vertical profiles are not assimilated into GEOS-5

Utilizing GEOS-5 ensembles, we are developing a 1-D ensemble approach to assimilate CATS observations of total attenuated backscatter into GEOS-5

0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004 0.005

$x_{analysis} = x_{background} + BH^{T}[HBH^{T} + R]^{-1} (\gamma_{o} - Hx_{background})$

where:

 $\mathbf{x}_{background}$ = ensemble mean 1064 nm total attenuated backscatter $\mathbf{\gamma}_{o}$ = CATS 1064 nm total attenuated backscatter B = Background error covariance from ensemble perturbations w/vertical localization R = CATS error covariance H = Linear operator that regrids GEOS-5 to CATS vertical resolution

$x_{analysis} = x_{background} + BH^{T}[HBH^{T} + R]^{-1} (\gamma_{o} - Hx_{background})$

where:

x_{background} = ensemble mean 1064 nm total attenuated backscatter

 γ_{o} = CATS 1064 nm total attenuated backscatter

B = Background error covariance from ensemble perturbations w/vertical localization

R = CATS error covariance

H = Linear operator that regrids GEOS-5 to CATS vertical resolution

$$\begin{split} \mathsf{B} &= \mathsf{Y}\mathsf{Y}^\mathsf{T} \circ \mathsf{C} \\ & \text{where:} \\ \mathsf{Y} &= [\boldsymbol{\gamma}'(\mathsf{z})_1, \, \boldsymbol{\gamma}'(\mathsf{z})_2, \, \dots, \, \boldsymbol{\gamma}'(\mathsf{z})_{\mathsf{nens}}] \end{split}$$

1– D Ensemble Assimilation

- Here, we perform a 1-D ENS analysis for a single profile, using a uniform vertical length scale of 1 km for vertical localization.
- The analysis draws very closely to the observations, particularly in the planetary boundary layer.

1-D Ensemble Assimilation: Profile with Boundary Layer Localization

- Next, we explored using different length scales for vertical localization in the planetary boundary layer vs. free troposphere.
- Changing the vertical length scale to 5 km in the PBL:
 - Preserves the transition in γ from the planetary boundary layer to free troposphere, as seen in the background
 - Enhances γ , as seen in observations.

1– D Ensemble Assimilation: Considerations for Extinction

Unlike total attenuated backscatter, simulated extinction values are not impacted by attenuation from above and is being considered as our "analysis" variable.

 $x_{analysis} = x_{background} + BH^{T}[HBH^{T} + R]^{-1} (\gamma_{o} - Hx_{background})$

where: $x_{background}$ = ensemble mean 1064 nm total attenuated backscatter γ_{o} = CATS 1064 nm total attenuated backscatter R = CATS error covariance

 $0.0000\ 0.0005\ 0.0010\ 0.0015\ 0.0020\ 0.0025\ 0.0030\ 0.0035\ 0.0040\ 0.0045$

H = Regrids GEOS-5 to CATS vertical resolution

 $B = YY^{T} \circ C$ where: Y = Tot. Atten. Bks Perturbations: [$\gamma'(z)_1, \gamma'(z)_2, ..., \gamma'(z)_{nens}$] GEOS-5 Ensemble Mean 1064 Extinction [km-1]

H = Regrids GEOS-5 to CATS vertical resolution & linear approximation of γ given **x**

 $B = XX^{T} \circ C$ where: X = Extinction Perturbations: $[x'(z)_{1}, x'(z)_{2}, ..., x'(z)_{nens}]$

1-D Ensemble Assimilation: Considerations for Extinction

Unlike total attenuated backscatter, simulated extinction values are not impacted by attenuation from above and is being considered as our "analysis" variable.

<u>Analysis Performed in Total</u> <u>Attenuated Backscatter vs.</u> <u>Extinction</u>

CATS 1064 nm Total Attenuated Backscatter [km⁻¹ sr⁻¹]

0.000 0.020 0.040 0.061 0.081 0.101 0.121 0.141 0.162 0.182

Summary: Part 2

Using GEOS-5, we are developing a 1– D ENS approach for assimilating CATS near real time observations of total attenuated backscatter at 1064 nm:

- After performing a 1 ENS assimilation of a cloud free profile, the GEOS-5 analysis closely followed observed total attenuated backscatter
- Vertical localization length scales were varied for the well mixed PBL and the free troposphere
- After assimilating a cloud free segment of a CATS granule, the fine detail of a dust event was obtained in the GEOS-5 analysis for both total attenuated backscatter and extinction

Future Work

- Explore horizontal localization and test within a cloudy aerosol layer
- Address "noisy" analysis increments in the free troposphere where both CATS and GEOS-5 aerosol loadings are low
- Develop a technique to screen CATS ground return from profiles
- "Dynamic" lidar ratio that will evolve in conjunction with simulated aerosol mixtures

Thanks!

Backups

1-D Ensemble Assimilation: Considerations for Extinction

$x_{analysis} = x_{background} + BH^{T}[HBH^{T} + R]^{-1} (\gamma_{o} - Hx_{background})$

where:

 $x_{background}$ = ensemble mean 1064 nm total attenuated backscatter γ_{o} = CATS 1064 nm total attenuated backscatter

B = Background error covariance from ensemble perturbations w/vertical localization R = CATS error covariance

H = Linear operator that regrids GEOS-5 to CATS vertical resolution

Data Acquisition

Cloud-Aerosol Transport System (CATS)

Data Acquisition

Data Acquisition

March 2015 – Present Aerosol Typing [0 – 2 km]

