


Synergqistic retrieval algorithm for operational EarthCARE L2b

products.

 Aim: to deliver the operational software to perform a synergistic retrieval of

clouds, precipitations and aerosols from

high-spectral resolution lidar, Doppler

radar and SW-LW radiances measured on board the EarthCARE satellite

(launch 2019)
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-> develop a shortwave radiance
model for clouds and aerosols that is
fast enough to use iteratively in a
retrieval or assimilation system, but
which does not need to assume just a
single particle type in an atmospheric
profile (like current look-up table
approaches)

ESA-JAXA
EarthCARE
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Retrieved liquid and aerosol number concentration, rain
rate and ice extinction for a 6000 km long A-Train scene
assimilating Lidar, Radar and infrared radiances
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The challenge of modelling shortwave radiances

« State-of-the-art is the discrete ordinate method e.g. DISORT
= Discretize radiance distribution in elevation by N streams
= Expand the radiance distribution in azimuth as a cosine series

= For each cosine term, solve large matrix problem for Z
multiple layers

= Computational cost proportional to N3
= Probably too expensive to run iteratively in a retrieval
= Challenging to code the adjoint of such a model

» Typically calculations performed offline to generate a 5D lookup table
as a function of solar zenith angle, instrument zenith angle, optical
depth, particle effective radius, surface albedo

= Not feasible to represent multiple layers containing different particle types (e.g. thin
ice clouds over aerosol or liquid cloud), even if information on such layering is
available from active instruments
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The two-stream source function technique
(Toon et al. 1989)

First try to adapt the Toon et al. (1989) infrared model to the shortwave

I “i%‘%. — Compute profile of direct solar radiation
EARTHCARE

Fo — Two-stream scheme for diffuse fluxes

— Single-scattering contribution to radiance
simply reading off phase function at ¢,

S — For multiple-scattering contribution to
' radiance, perform 1D radiance calculation

using diffuse fluxes as the source function

dFy  F,

Direct beam obeys: - -
dt cos(6,)

Very fast, accuracy adequate for fluxes (used in weather and climate models)
Not very accurate for radiances due to wide forward lobe in the phase function
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Forward-Lobe Two-Stream rAdiance Model (FLOTSAM)

» Cloud and aerosol phase functions have a wide
forward lobe and can be parameterized as the
weighted sum of four components

* Propagation of radiation scattered by wide forward
lobe is treated as a separate stream

» Single scattering treated exactly
 Much faster than discrete ordinate method

» Potentially more accurate than look-up table when
multiple particle types present in profile
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EARTHCARE
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Phase function

r,= 10 um

p = [0.5 0.42 0.042 0.042]

Forward lobe
Forward diffuse

Quasi-delta function

TOTAL

45 90 135 180

Angle (°)




Forward-Lobe Two-Stream rAdiance Model
(FLOTSAM)

% — Compute profile of direct solar radiation
O W

EARTHCARE — Compute profile of radiation in the forward
lobe with effective zenith angle &,

— Two-stream scheme for diffuse fluxes

— Single-scattering contribution to radiance
( Q‘?E — Lobe contribution to radiance by reading
i off smoothed phase function at ¢;

— Multiple-scattering contribution to radiance

dF; . F, — Also treat lobe in path to satellite
ar _ ProT 1 cos(6,)

Lobe flux obeys:

Very fast, straightforward to code up adjoint
Some flexibility in how the forward lobe is specified
Is it accurate?
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Full radiance field: Two-stream source
function

DISORT TWO STREAM DISORT TWO STREAM
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radiance pattern for solar zenith angle of 60 degrees
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Validation against DISORT 1 — -
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Simulation of geostationary visible imagery at 0.5 microns
clear sky

ECMWEF cloud, albedo
and surface winds fields
at 1/8 degree resolution

Rayleigh scattering but
neglect aerosols and
gas absorption

Merge clear-sky layers
for speed

Cost ~0.5 ms per profile

Adjoint/Jacobian from
automatic differentiation

Cox and Munk-type
parametrization of
ocean sun glint




Simulation of geostationary visible imagery at 0.5 microns
total sky (static cloud field)

ECMWEF cloud, albedo
and surface winds fields
at 1/8 degree resolution

Rayleigh scattering but
neglect aerosols and
gas absorption

Merge clear-sky layers
for speed

Cost ~0.5 ms per profile

Adjoint/Jacobian from
automatic differentiation

Cox and Munk-type
parametrization of
ocean sun glint




Summary — new SW model

New fast shortwave radiance model “FLOTSAM” under development
Explicitly estimates the fraction of radiation in the forward lobe

Work required to improve representation of the forward lobe and
hence radiances looking towards the sun

Coded in C++ using Adept library (Hogan 2014) for automatic
differentiation

Additional speed-up possible for shortwave radiances because layers
with similar phase functions can be combined
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NASA ER-2 test data

« Excellent platform to test EarthCARE algorithms:
— CRS 94-GHz radar: reflectivity, Doppler velocity and path-integrated attenuation
— CPL lidar: we use 532-nm backscatter but 355-nm and 1064-nm also available
— MAS 50-channel radiometer: solar, near-IR and thermal-IR channels

— EDOP 10-GHz radar: reflectivity & Doppler velocity — use for validation

* Two contrasting cases from TC-4 campaign over Pacific ocean near Panama:
— lce cloud & stratiform rain

— Warm rain from thick liquid cloud
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Case 1: ice cloud and rain
Assimilate Z, v, PIA, B

Retrieve ice extinction, ice Nw, lidar
ratio, rain rate, rain Nw

Rain rates of 1-10 mm ht

What happens if we assimilate 550-
nm radiance as well?
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i Retrieved liquid water content

Path integrated attenuation (dB)
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Case 2: liquid cloud and warm rain
» Assimilate Z, v, PIA, B

* Retrieve liquid water content, rain rate,
rain Nw

* Much higher Nw retrieved compared to
rain from melting ice

e Rain rates of 0.1-10 mm h-?
» Assimilating 550-nm radiance allows
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Comparisons against model-generated scenes
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Comparisons against model-generated scenes
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Summary and future work

« FLOTSAM is promising shortwave radiance model for retrievals and
assimilation

* Developments to expect in the next 6 months

Evaluate against DISORT using aerosol phase functions

Test aerosol retrievals using A-Train (MODIS+CALIPSO) observations
Optimize code - e.g. not thread-safe at the moment

Submit a paper

Release under a free-software license

* Improvements to consider if used for NWP

Represent sub-grid cloud structure
Add gas absorption if to be used for near-IR wavelengths

If “Adept” automatic differentiation too slow, could recode in Fortran
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FLOTSAM on
ECMWEF data

JMA's
Himawari-8




