

Radiative transfer: From plane parallel to 3D RT

Tamás Várnai^{1,2}, Alexander Marshak¹, Guoyong Wen^{1,3}, Robert Levy¹, Frank Evans⁴ 1: NASA GSFC, 2: UMBC JCET, 3: Morgan State Univ., 4: Univ. of Colorado

Most aerosol studies use 1D radiative transfer

Assume variations only in vertical direction: Δ

$$\Delta \approx \frac{dy}{dz}$$

Smog

Large 3D variations occur near strong point sources

$$\Delta \approx \frac{\partial y}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial z} \neq \frac{dy}{dz}$$

Farther from source, plumes become closer to 1D

Time: 22:49:09

Filename: 2008-06-30_75.jpg

MODIS Aqua, June 30, 2008

NASA P-3 camera, June 30, 2008

Variations are 3D around clouds

Saharan dust & clouds

Most clear areas are not too far from clouds

3D radiation near clouds is of interest to many

- Solar energy: peak periods (Yordanov et al., 2013) ٠
- Health: UV enhanced for low CF (Nunez et al., 2016)
- Aerosols (energy budget, remote sensing)

Clear & partly cloudy day

Absorbing aerosols above clouds: 3D effects enhance direct radiative effect (DRE) on TOA upward flux

0.49 μ m, Sc field (most heterogeneous areas excluded), Solar zenith angle: 40°, [W/m²/ μ m]

	3-D modeling	1-D modeling	$(F_{1-D}-F_{3-D})/F_{3-D}$ (%)
$F_{\text{cloud+aer}}^{\uparrow}$	569.01	564.48	-0.79
$F_{\rm cloud}^{\uparrow}$	661.07	646.40	-2.22
$DRE = F_{cloud}^{\uparrow} - F_{cloud+aer}^{\uparrow}$	92.06	81.92	-11.01

Peers et al. (ACP, 2015)

3D enhances aerosol absorption below clouds

3D increased aerosol absorption by less than 0.5 W/m^2 (for 1D abs. of 3-5 W/m^2)

Fu et al. (JAS, 2000)

Impact of 3D effects on remote sensing can interest

Users of satellite-based aerosol observations in data assimilation or model testing (Using satellite retrieval results or model-based satellite simulators)

Simulation for G-LAPS analysis

DSCOVR EPIC image

Steven Albers

Simulations: 3D enhances radiances around clouds

In observations, other enhancements from:

- Aerosol swelling
- Cloud contamination
- Cloud processing
- Instrument blurring

Radiance enhancements \rightarrow higher retrieved AOD values

Airborne data shows near-cloud enhancements

NASA ER-2 eMAS Centreville, Alabama, August 30, 2013

Satellite images also show near-cloud enhancement

MODIS image

AOD

Aqua MODIS, August 5, 2016

Near-cloud enhancements are statistically large

Loeb and Manalo-Smith (J. Clim., 2005)

Based on Várnai and Marshak (Rem. Sens. 2015)

CF & distance to cloud impact AOD separately

Várnai and Marshak (Rem. Sens., 2015)

CF-AOD correlation is positive throughout the globe

MERRA-2

June-July-August, 2012-2014

Similar behavior for other models (e.g., Quaas et al., ACP, 2010)

MODIS CF & AOD well-correlated for all MERRA-2 aerosol types

MODIS Aqua, JJA 2012-2014

AOD often increases with CF more for small mode

- 3D effect: bluing
- small mode is more hygroscopic
- coarse mode aerosol is at altitudes with dry air
- cloud processing creates small aerosols

MODIS Aqua, JJA 2012-2014

3D causes significant part of near-cloud enhancements

CALIOP can observe enhancements from:

- Aerosol swelling
- Cloud contamination
- Cloud processing

It is not affected by:

- 3D enhancement
- Instrument blurring

Global oceans, 60°N – 60°S (Várnai et al., ACP, 2013)

Impact of 3D effect varies with retrieval algorithm

3D effects vary with

- Wavelength (deep blue vs. dark target)
- Polarization (POLDER vs. MODIS)
- View directions (MISR vs. MODIS)

POLDER: 3D effects do not cause problems if

CF < 5% or τ_{cloud} < 5

For CF = 25% and τ_{cloud} = 10:

∆AOD = 0.12 (≈25%), ∆SSA = 0.09

Stap et al. (JQSRT, 2016):

Analytical model is tested for removing 3D enhancements

$$R_{1D} = R_{MODIS} - \Delta R$$

 ΔR is function of:

- sun-view geometry
- mean cloud altitude and albedo
- surface albedo
- aerosol parameters

80 LES-based scenes

Wen et al. (JGR, 2016)

3D correction reduces retrieved AOD-s and can change Angstrom exponents either way

31 MODIS granules off the West coast of North & South America, August 1-8, 2013

Summary

- Simulations: 3D effects increase both the radiative effect of absorbing aerosols above Sc clouds and the absorption by below-cloud aerosols.
- MODIS & MERRA-2: Cloud fraction and AOD are positively correlated through most the globe and for all aerosol types. Correlation is often stronger for MODIS & fine mode.
- Simulations, MODIS + CALIOP: 3D radiative effects have a significant impact on satellite radiances near clouds, where a large portion of clear-sky columns occur.
- An analytical model is being developed to help dark target aerosol retrievals by estimating 3D reflectance enhancements.