Status of versatile GRASP retrieval algorithm

Towards "the universal" retrieval approach

<u>Oleg Dubovik¹</u>, Pavel Litvinov², Tatyana Lapyonok¹, Anton Lopatin¹, David Fuertes², Fabrice_Ducos¹, Xin Huang¹, Benjamin Torres², Qiaoyun Hu, Yevgeny Derimian¹, Cheng Chen¹, Lei Li¹, Michael Aspsetsberger³ and Christian Federspiel³

1 - Laboratoire d'Optique Atmosphérique, CNRS – Université Lille 1, France;

- 2 GRASP-SAS, LOA, Université Lille 1, Villeneuve d'Ascq, France
- 3 Catalysts GmbH, High Performance Computing, Linz, Austria

GRASP: Generalized Retrieval of Aerosol and Surface Properties

⁹⁻th ICAP, Lille, France, 26 – 28 June, 2017

Multi-Source LSM approach: $P_{1,2,3} = P_1 P_2 P_{3...} \sim \exp\left(-\frac{1}{2\sigma_1^2} \sum_i \frac{\sigma_i^2}{\sigma_i^2} (\Delta f_i^T \Delta f_i)\right) = max \longrightarrow \sum_i \frac{\sigma_i^2}{\sigma_i^2} (\Delta f_i^T \Delta f_i) = min$ where $\Delta_i = f_i^* - f_i(a)$ and f_i^* - measurements or a priori data P(...) - Probability Density Function (Likelihood)

- Optimum data combination
- Optimum use of a priori information
- Continuous solution space
- Rigorous error estimations
- Large number of retrieved parameters with less assumption

The concept of multi-pixel retrieval

X-Variability Constraints

9-th ICAP, Lille, France, 26 – 28 June, 2017

Multi-term LSM Multi-Pixel Solution:

Priorities in GRASP development for ground-based and in situ observations:

- multi-instrument combination,
- diversity of observations,
- consistency of observations

Advanced processing of ground-based observations using GRASP:

- combining observation during several days;
- combining day and night observations;
- combining passive (photometric) and active (lidar);
- combining ground-based and satellite observations;
- retrieving as many parameters as possible;

Expectations: more accurate and more complete validation data set

LIDAR + AERONET

Fitting AERONET by AERONET/lidar GRASP retrieval

LIDAR + AERONET – GRASP retrievals

Fig 3. Retrieval of aerosol vertical concentration and size distribution for 16 Apr, 2015 (09:04,) and 20 Jan, 2016 (09:15).

Qiaoyun HU, Anton Lopatin, etc.

Polar- Nephelometer (Martins et al.), GRASP

Espinosa et al. 2017

Figure 9. Retrieved real part of the refractive index for PSL spheres, alongside three previous, modern measurements of polystyrene refractive indices (Ma et al., 2003; Jones et al., 2013; Sultanova et al., 2003). The subplot shows the retrieved size distribution (blue) along side the manufacturer's specified central radius (red dashes) and FW67 (red dots).

Figure 8. Scattering matrix elements at 473 nm (blue), 532 nm (green) and 671 nm (red) for 903 nm diameter PSL sample along with the corresponding GRASP fits (solid lines).

Compound	DRH (%)	Measured RH (%)	К	r ₅₀ (nm)	Sphere (%)	<i>n</i> dry	n _{wet} GRASP	$n_{\rm wet}^{\kappa}$ Köhler
NaCl	80	83.7 ± 2	0.91-1.33	144	100	1.544	1.395	1.353-1.372
$(NH_4)_2SO_4$	75	82.6 ± 2	0.33-0.72	120	100	1.530	1.383	1.370-1.414
NH ₄ NO ₃	62	83.5 ± 2	0.58-0.75	129	54	1.554	1.392	1.371–1.393
								-

Lunar Photometer: Night GRASP/AOD inversions

Multi- Angular Polarimetric imagery:

PARASOL:

- radiances: (443, 490, 560, 670, 870, 1020 nm)
- polarization: (490, 670, and, 870 nm)
- up to 16 viewing directions

With the second seco

Complex Refractive Index at

 $\lambda = 0.44; 0.67; 0.87; 1.02 \,\mu m$

AEROSOL:

- size distribution (5 or more bins)
- spectral index of refraction (8 λ)
- sphericity fraction;
- aerosol height

SURFACE:

- BRDF (3 spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

Real Part Imaginary Part 1.55 0.01 1.45 1.40 1.35 0.67 0.87 0.67 0.87 Radius (um) Wavelength (µm) Wavelength (µm) BRDF **BPDF**

43 = (5 (SD) +12 (ref. ind.) + 1 (nonsp.) + 18 (BRDF) +6 (BPDF) + 1 (height) 9-th ICAP, Lille, France, 26 – 28 June, 2017

144 measurements

Particle Size Distribution:

0.05 μm ≤ R (22 bins) ≤ 15 μm

3MI / Metop

9-th ICAP, Lille, France, 26 – 28 June, 2017

3MI / Metop

9-th ICAP, Lille, France, 26 – 28 June, 2017

3MI / Metop

PARASOL:

- radiances: (443, 490, 560, 670, 870, 1020 nm)
- polarization: (490, 670, and, 870 nm)
- up to 16 viewing directions

Complex Refractive Index at

 $\lambda = 0.44; 0.67; 0.87; 1.02 \,\mu m$

AEROSOL:

- size distribution (5 or more bins)
- spectral index of refraction (8 λ)
- sphericity fraction;
- aerosol height

SURFACE:

- BRDF (3 spectrally dependent parameters)
- BPDF (1 or 2 spectrally dependent parameters)

0.05 μm ≤ R (22 bins) ≤ 15 μm **Real Part Imaginary Part** 1.55 0.01 1.45 1.40 1.35 0.67 0.87 0.67 0.87 Radius (um) Wavelength (µm) Wavelength (µm) BRDF **BPDF**

43 = (5 (SD) +12 (ref. ind.) + 1 (nonsp.) + 18 (BRDF) +6 (BPDF) + 1 (height) 9-th ICAP, Lille, France, 26 - 28 June, 2017

144 measurements

Particle Size Distribution:

AOD (565), Winter (PARASOL archive average)

Averaged Winter data of POLDER Log AOD 565 (2005-2013)

Amount of aerosol

Angstrom exponent, Summer (PARASOL archive average)

Averaged Summer data of POLDER Angstrom Exponent 670-865 (2005-2013)

Large particles

Small particles

AOD(565) – aerosol loading

2012 Winter

2012 Spring

PARASOL Validation vs AERONET 2004 - 2013

PARASOL Validation vs AERONET 2004 - 2013

PARASOL Validation vs AERONET 2004 - 2013

Land + Ocean

AOD Coarse mode

Correlation of population density and pollution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fine AOD 565nm 2011 Winter

AOD_{fine}(565)

Fine AOD 565nm 2011 Autumn

Scale height (m), Winter (PARASOL archive average)

Averaged Winter data of POLDER Vertical Profile Height (2005-2013)

PM2.5 climatology

WHO Global Urban Ambient Air Pollution Database

PARASOL/GRASP 2008

PARASOL/GRASP PM2.5 over Beijing 2009–2012

AOT>0.3, residual<3%

A. Lopatin

First parameter (670 nm) of Ross-Li BRDF, 2008

PARASOL water living radiance

December 2008,

PARASOL

2008

PARASOL:

- radiances: (443, 490, 560, 670, 870, 1020 nm)
- polarization: (490, 670, and, 870 nm)
- up to 16 viewing directions

144 measurements

MERIS:

- radiances: (413, 443, 490, 510, 560, 665, 755, 870)

 \mathbf{H}

- 1 viewing direction

8 measurements

MERIS: - radiances: (413, 443, 490, 510, 560, 665, 755, 870)

- 1 viewing direction

AEROSOL:

SURFACE:

(3 parameters)

- BRDF

- size distribution (5 or more bins)
- spectral index of refraction (8 λ)
- sphericity fraction;

43 = (5 (SD) +16 (r. ind.) + 1(nonsp.) + 21 (BRDF)) -> 25 = (4 (aer. comp.) + 21 (BRDF))

8 measurements

GRASP/MERIS 2002- 2012 product has been generated Cat

10 km resolution

September, 2008

Total extinction for aerosol optical properties for 560 nm

September, 2008 September, 2008

Validation vs AERONET, AOD over land

PARASOL/GRASP, R=0.91

MERIS/GRASP, R=0.76

Validation vs AERONET over land

Angstrom

GRASP/PARASOL

GRASP/MERIS

Mongu, 1200x 1200 zone.

AATSR - fails with aerosol model ???

MERIS is surprisingly good with R, but slope is wrong ??? PARASOL could be better???

Mongu, 1200x 1200 zone. 2005-2013. 2 sites. GRASP

September, 2008

Comparison of surface reflectance **GRASP/MERIS** dhr565 **Good agreement ! MERIS vs. PARASOL** FIT: Y=1.020X+0.007 N=41538 R² =0.981 RMSE=0.029 0.6 0.5 SALB6 MERIS 0 0.3 **GRASP/PARASOL** 0.1 dhr565 (none) 0. 0.4 0.5 0.6 0.3 0.1 PARASOL SALB670 0.2 0.3 0.4 0.5 Data Min = 0.0, Max = 0.6, Mean = 0.1

PARASOL/GRASP 2004- 2013 product has been generated

				1	The second se		1.1			
0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
				Amount	t of aeros	ol (absolu	ute scale)			

Validation against AERONET for high AOD biomass cases

9-th ICAP, Lille, France, 26 – 28 June, 2017

Biomass burning. Mongu region, August, 3, 2013

9-th ICAP, Lille, France, 26 – 28 June, 2017

CALIPSO backscattering

CALIPSO depolarization

1st International Workshop on

Advancement of POLarimetric Observations Calibration and improved aerosol retrieval

October 24-27, 2017 Hefei · China

- Welcome Letter
- Important Dates
- Organizing Committee
- Agenda
- Invited Speakers
- Registration
- Abstract Submission
- Venue
- Booking Hotel
- Sponsorship
- Tours Information
- Useful Information
- Contact Us

Welcome Letter

Dear colleagues,

We are glad to announce that the 1st International Workshop on "Advancement of polarimetric observations: calibration and improved aerosol retrievals" (APOLO2017) will be held in Hefei, China from October 24 to 27, 2017. This is the first workshop of a series of polarimetry workshops (http://www-loa.univ-lille1.fr/workshops/APOLO-2017).

Several polarimetric missions are scheduled for launch in the coming years by international and national space agencies. Satellite polarimetry is one of the most promising and, at the same time, largely underexploited fields of aerosol remote sensing. This is the 1st meeting of the planned series of workshops on satellite polarimetry. These scientific workshops aim to promote international collaboration as well as in-depth exchange of ideas and experiences on diverse aspects of polarimetric remote sensing, in particular: advances in the theory of polarimetric remote sensing, optimisation of strategies of polarimetric Earth observations, improvement of polarimetric observation quality and information content, advancement of retrieval algorithms and data processing, and long-term Cal/Val.

Climatology (Beijing, China)

Li et al. 2014

9-th ICAP, Lille, France, 26 – 28 June, 2017

GRASP: Generalized Retrieval of Aerosol and Surface Properties

Strength of GRASP algorithm concept:

- ✓ Based on accurate rigorous physics and math;
- Versatile (applicable to different sensors and retrieval of different parameters);
- Designed for multi-sensor retrieval (satellite, groundbased, airborne; polar and geostationary,);
- Not-stagnant (different concept can be tested and compared within algorithm);
- ✓ Flexible
 - generalizable (to IR, hypo spectral, to retrieval of gases and clouds, etc.);
- or degradable (to less accurate but fast solution, LUT,...);
- Practical (rather fast and easy to use for given level fundamental complexity);

Current and potential applications:

Satellite instruments:

<u>polar</u>: POLDER/PARASOL, 3MI/MetOp-SG, MERIS/Envisat, Sentinel-3 (OLCI, SLSTR), etc. <u>geostationary</u>: Sentinel-4, FCI, GOCO, Himawari-8, etc.

Ground-based, airborne and laboratory instruments:

passive: AERONET radiometers, sun/luna/star-photometers, etc. *active*: multi-wavelength elastic and non-elastic lidars; *airborne and laboratory*: *polar nephelometers*,

Multi-instrument synergy:

<u>ground-based</u>: lidar + radiometers + photometers , sun/luna/star-photometers, etc. <u>satellite</u>: OLCI + SLSTR, polarimeter + lidar (e.g. PARASOL + CALIPSO)

Support: CNES (TOSCA, RD), ANR (CaPPA), ESA (S-4, MERIS/S-3, GPGPU, CCI, CCI-2,CC+); EUMETSAT (3MI NRT), FP6-7 (ACTRIS 1-2), Catalysts GmbH, etc.

<u>Collaborations</u>: NASA/JPL, NASA/GSFC, NASA/GISS, NASA/Langley KNMI, JAXA, Catalysts GmbH (Austria), Chinese Academy of Science and Space Agency, Belarus, Ukraine, etc.

Banizoumbou 1200x 1200 zone

AATSR- fails for AOD > 1.0 ??? PARASOL fails with the slope ??? MERIS is surprisingly good ???

Aged soot-containing aerosol. LIDER depolarization measurements and theoretical modeling (Mischenko et al., Applied Optics, 2016)

Burton et al., Atmos. Chem. Phys. 2015:

Table 1. Measured Spectral Values of the LinearDepolarization Ratio and Their Ranges [20]

	δ (355 nm)	δ (532 nm)	δ (1064 nm)
Measured	0.203 ± 0.036	0.093 ± 0.015	0.018 ± 0.002
	(0.017)	(0.011)	(0.007)
Range	[0.150, 0.256]	[0.067, 0.119]	[0.009, 0.027]

Mischenko et al., Applied Optics, 2016: Complex morphologies of aged sootcontaining aerosols can reproduce the spectral dependence of linear depolarization observed for an aged smoke plume by Burton et al.

9-th ICAP, Lille, France, 26 – 28 June, 2017

BRDF models uncertainties.

0.04

0.02

0.00

-0.02

60

BRDF models uncertainties!

Black curves: RPV model *Blue curves:* Ross-Roujean model *Red curves:* Ross-Li model

0.04 R^{top_1} Dtop, ī of $0.02 F_{mol} \approx 0.06$ Relative Difference .67 μm -0.0220 40 $^{-4}$ Viewing²Zenith Angle Black curves: the relative differences of the **BRDF models (RPV and Ross-Li models)** Color curves: the relative differences of the top of atmosphere total reflectances (RPV and Ross-Li model, the same aerosol model)

-20

Top of atmosphere simulations

 $\tau \approx 0.77$

20

40

Ο

 $\tau \approx 0.24$

-40

BRDF models uncertainties can provide up 2- 5% systematic error in top of atmosphere signal! (Litvinov et al., RSE, 2011)

Banizoumbou Mongu llorin AOD(675nm) AOD(675nm) AOD(675nm) 0.6 3.5 Ross-Li / Ross-Li / 1.4 Ross-Li / 0.5 3.0 Maignan Maignan 1.2 Maignan **GRASP** retrieval **GRASP** retrieval retrieval 0.4 2.5 1.0 0.8 0.3 2.0 GRASP 0.6 1.5 0.2 0.4 1.0 0.1 0.2 0.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 0.2 0.3 0.4 0.5 0.6 0.5 1.0 1.5 2.0 2.5 3.0 3.5 AERONET AERONET **AERONET** K=0.980 a= 0.74 b= 0.05 RMSE= 0.131 K=0.988 a= 1.07 b=-0.02 RMSE= 0.022 K=0.973 a= 0.95 b= 0.00 RMSE= 0.153 AOD(675nm) AOD(675nm) AOD(675nm) 0.6 3.5 **Gaussian BRM Gaussian BRM** Gaussian BRM 1.4 0.5 3.0 1.2 **GRASP** retrieval **GRASP** retrieval retrieval 2.5 0.4 1.0 0.8 2.0 0.3 GRASP 0.6 1.5 0.2 0.4 1.0 0.1 0.2 0.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.5 0.1 0.3 0.4 0.6 0.5 1.5 2.0 2.5 3.0 1.0 3.5 **AERONET** AERONET **AERONET** K=0.979 a= 0.79 b= 0.09 RMSE= 0.096 K=0.984 = 1.10 b=-0.02 RMSE= 0.025 K = 0.975 a = 0.89 b = 0.11 RMSE = 0.144

Surface BRM effect (Ross-Li and Gaussian BRDF). AOD.

Surface BRM effect (Ross-Li and Gaussian BRDF). SSA.

MERIS/GRASP - AOD

Land

Ocean

Banizoumbou 1200x 1200 zone. 2002-2012. AATSR.

Mongu 1200x 1200 zone. 2002-2012. AATSR.

Real Part of Ref. Index (565), Summer (PARASOL archive average)

Averaged Summer data of POLDER Ref. Index Real Part 565nm (2005-2013)

