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Sub-seasonal prediction

» Bridges the gap between weather and climate forecasting.

» First attempts of sub-seasonal forecasting started in the 1980s (Miyakoda, Molteni..)

« A particularly difficult time range:

Is it an atmospheric initial condition problem as medium-range forecasting oris it a
boundary condition problem as seasonal forecasting? Is it a “Predictability Desert” ?



Sources of sub-seasonal predictability

» Madden-Julian Oscillation

» Extra-tropical modes (weather regimes: blockings, NAO, PNA, SAM..)
» Sudden Stratospheric Warming

» Quasi-Biennal Oscillation

» ENSO

» Slowing varying processes: Soil moisture/vegetation, snow, sea ice, ocean
SSTs/heat content

» Chemistry: Ozone, aerosols...
» Others?

Sub-seasonal skill is strongly flow-dependent



Madden Julian Oscillation prediction at ECMWF

MJO Bivariate Correlation
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CY31R1: Parameterisation of ice supersaturation
CY32R2: McRAD (radiation scheme) Wheeler and Hendon (2003) Index

CY32R3: Changes in convective scheme (Bechtold at al. 2008)
CY40R1: Improved diurnal cycle of precipitation
CY41R1: revised organized convective detrainment and the revised convective momentum transport. ...

Improvements in MJO Prediction mostly due to changes in convective parameterization



Does adding complexity improves sub-seasonal skill
scores?

»= Could add new sources of predictability

» Could impact sources of predictability and/or their teleconnections






(Opemicus CAMS aerosol forecasts

Built on the ECMWF NWP system with additional
prognostic aerosol variables (sea salt, desert dust,
organic matter, black carbon, sulphates)

Aerosol data used as input in the aerosol analysis:

- NASA/MODIS Terra and Aqua Aerosol Optical
Depth at 550 nm, now also PMAP AOD at 550nm

- NASA/CALIOP CALIPSO Aerosol Backscatter
(experimental)

- AATSR, PMAP, SEVIRI, VIIRS (experimental)

Verification based on AERONET Aerosol Optical
Depth (and now also Angstrom exponent)

Part of multi-model ensemble efforts such as the
International Cooperative for Aerosol Prediction
(ICAP) and the WMO Sand and Dust Storm
Warning and Assessment System (SDS-WAS)
North-African-Middle-East-Europe and Asian
nodes.

Source: http://sds-was.aemet.es




Radiation

Vertical diffusion

Mass-Flux convection

Aerosols in the ECMWEF IFS

Physics —

Physics with prognostic aerosols

Large-scale condensation

— Cloud scheme

Modified routine

Unchanged

Morcrette et al. 2009, JGR, 114, doi:10.1029/2008JD011235

Radiation

Vertical diffusion

Mass-flux convection

Large-scale condensation

Cloud scheme

12 aerosol-related prognostic variables:

* 3 bins of sea-salt (0.03 - 0.5-0.9 — 20 pm)
e 3 bins of dust (0.03 — 0.55 — 0.9 — 20 pum)

» Black carbon (hydrophilic and —phobic)

» Organic carbon (hydrophilic and —phobic)

« SO,->S0O,

More species to come (i.e. nitrates) and revisited
parameterizations (Remy et al, 2017, in preparation)

Physical processes include:

* emission sources (some of which updated

in NRT, i.e. fire emissions),

* horizontal and vertical advection by dynamics
« vertical advection by vertical diffusion and
convection

* aerosol specific parameterizations for

dry deposition, sedimentation, wet deposition
by large-scale and convective precipitation, and
hygroscopicity (SS, OM, BC, SU)



Monthly EPS coupled runs with interactive aerosols

Control run for the period 2003-2015 uses standard Tegen et al 1997
climatology

Interactive aerosol run covers the same period and uses fully prognostic
aerosols in the radiation scheme — only aerosol direct effect

Free-running aerosols with updated emission for biomass burnin
Ensemble size is 11 members, T255 resolution, 91 levels

5 different start dates around May 1 (55 cases in total) — summer runs
(focus of this talk)

3 different start dates around November 1 (33 cases in total)- winter runs
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Aerosol impacts on monthly forecasts (summer)

e Preliminary results show a positive impact (reduction in bias) of the interactive aerosols on
meteorological fields (winds and precipitation) as observed in studies using a more up-to-date
aerosol climatology

 More prominent (positive) impact over the Indian Ocean and to a lesser extent in other areas
which is also consistent with new climatology results for the same model release
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Aerosol impacts on monthly forecasts (summer) Scorecards measures
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e Similar impacts are observed with the new ECMWF/CAMS climatology
* Need to understand the relative importance of the meteorological feedback on the daily variability of
aerosols
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MJO phases

Phase
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Average rainfall for all MJO events from 1979 to 2012
for the period November-March

Green/blue shading represents areas of enhanced
convection

Brown shading represents areas of suppressed
convection

Note the eastward shift of the dipole with the successive
phases
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Sub-seasonal variability of aerosols
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Modulation of dust optical thickness by the MJO

DUST Optical thickness
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Climatology of Dust optical Thickness (x100)
May-June — Month 1

DUST Optical thickness
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Fraction of change in Dust optical thickness in MJO Phase 23
relative to climatology

DUST Optical thickness
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Fraction of change in Dust optical thickness in MJO Phase 45
relative to climatology

DUST Optical thickness
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Fraction of change in Dust optical thickness in MJO Phase 67 relative
to climatology
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Fraction of change in Dust optical thickness in MJO Phase 81 relative
to climatology

DUST Optical thickness
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Modulation Of Organic Matter at 550 nm Optical Depth by the MJO

MJO Phase 23 MJO Phase 45
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A striking case: Indonesian fires (Aug-Oct 2015)

2m-tm anomaly Oct 2015 - Forecast starting 1st May
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Fire radiative power Aug-Oct 2015

e CTAMS Daly Fire Emissions (GFASvV1.2)
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By-product: monthly dust forecast (May 2015)

CAMS ANALYSIS — 30 May 2015 @ 1200UTC
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Summary and Future Perspectives

» Using prognostic aerosols interactively in the radiation seems to be beneficial to model skill at the sub-seasonal range
» Similar positive results were obtained with an improved aerosol climatology

* More investigation is needed to understand if positive impact comes from resolved time and spatial variability or
from a better representation of the aerosol fields which could be also delivered by an up-to-date accurate climatology

» Extreme events like the Indonesian fires of 2015 could only be captured with prognostic aerosols (and prognostic
fire emissions) — these events are connected to El Nino and have a high degree of predictability at the seasonal scale

» By-products of using interactive aerosols is the sub-seasonal aerosol prediction per se
* More systematic experimentation is needed to understand benefits vs costs. In the current configuration
the additional cost in the monthly EPS is 40-50%. HIGH RES runs are possibly prohibitive and perhaps benefits in the

medium-range are smaller — an aerosol climatology would remain the most viable option.

* Experiments ongoing with the latest model release: control run with Tegen et al (1997) climatology, run with new
ECMWF/CAMS climatology (see Sam'’s talk), runs with fully interactive prognostic aerosols

» Preliminary results show similar impacts as well as a strong dependence on the initialization (reanalysis are important!!!!)

CSECMWF Thank you for your attention! .



More complexity for sub-seasonal forecasting?
Pros:

= Can improve skill scores (ocean, sea-ice, aerosols..)
= Can lead to new products:
* Active aerosols: prediction of dust storm useful for Meningitis prediction

« Sea-ice model: Extended-range sea-ice forecasts for ship routing in the Arctic in Summer.

cons:

= Can be very expensive (e.g. active aerosols = 50% increase in cost)

Resources could be allocated to improve tropospheric models, through, for instance,
increased resolution, more frequent call to radiative transfer, increased ensemble size,
more frequent forecasts (daily instead of twice weekly)

= Makes system more complex to understand and maintain

= Can increase systematic errors particularly in short/medium-range forecasts and
possibly affect teleconnections

l o )
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Climatological AOD 550nm distribution
MACC vs Tegen et al 1997 (OPER)
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* MACC run (2003-2012): sources of biomass burning from GFAS, sulphate aerosol precursor from EDGAR
4.1, prognostic for sea salt and dust, revised dust model

» Optical properties recomputed for RRTM spectral bands and for each aerosol type/size bin. Mass mixing
ratio as input to radiation

 Vertical distribution following an exponential decay with scale height derived from the MACC model for

each aerosol type. Monthly varying for dust.
<~ ECMWF Credits: Alessio Bozzo



From medium-range to seasonal to extended range

Seasonal Forecast

DJF 2015/16
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