### **Near Space and Beyond**

Student-Driven Payload Projects at UND

Ron Fevig 2011 May 09

### UND High Altitude Balloon (HAB) Program



UND HAB Coordinators
Ron Fevig (SpSt)
John Nordlie (RWIC)

First launch = 1998 Oct 24 Total launches to date = 38



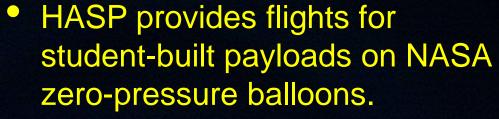


### Near-Space Recovery Technology (NSRT)

Passive (prediction)

Active (cut-down, steerable parachute)








### **UND HASP**

(High Altitude Student Platform)







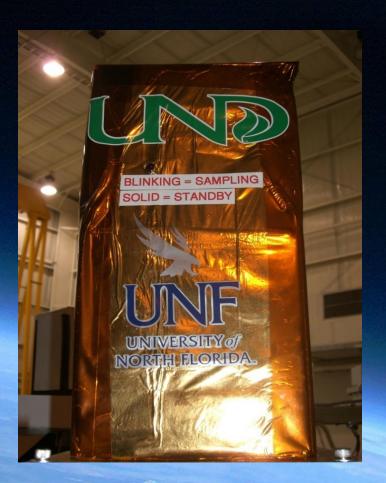
- HASP provides power and a data link for these payloads.
- Altitude ≈ 36 km
- Duration = 15 20 hours
- UND DSS applied for and was awarded a flight.

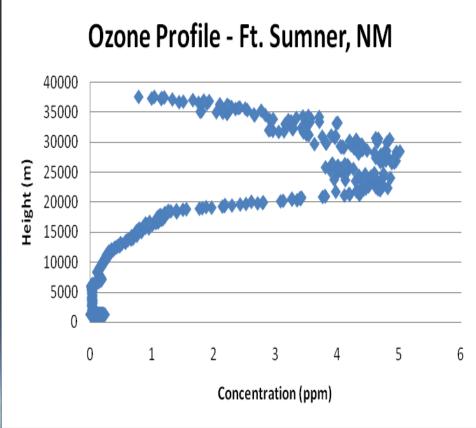




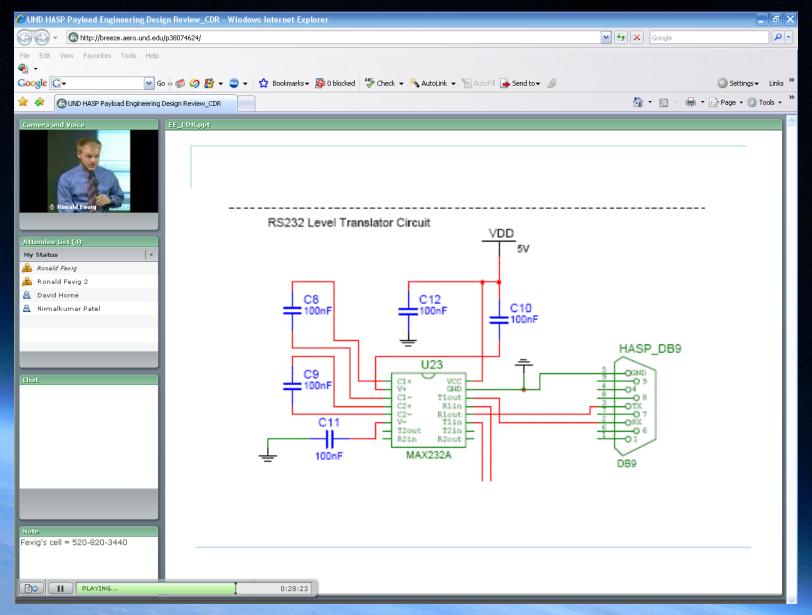







SPACE SCIENCES GROUP


Department of Physics and Astronomy

# UND HASP 2008 Flight - SUCCESS! -






### Virtual Engineering Teams



### UND HASP 2009

- Launch Date = 2009 Sep 11
- Our second successful flight







### UND HASP 2010 & 2011

 Upcoming flights of our third and fourth payloads this year



High Altitude Student Platform

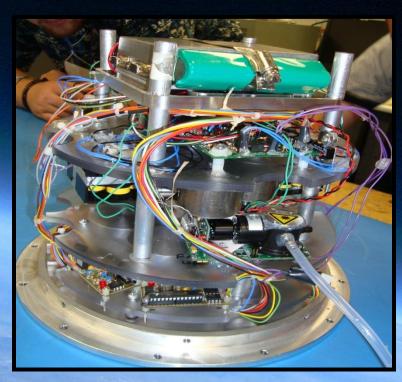


#### Call for Payloads 2011

Issued October 7, 2010 by

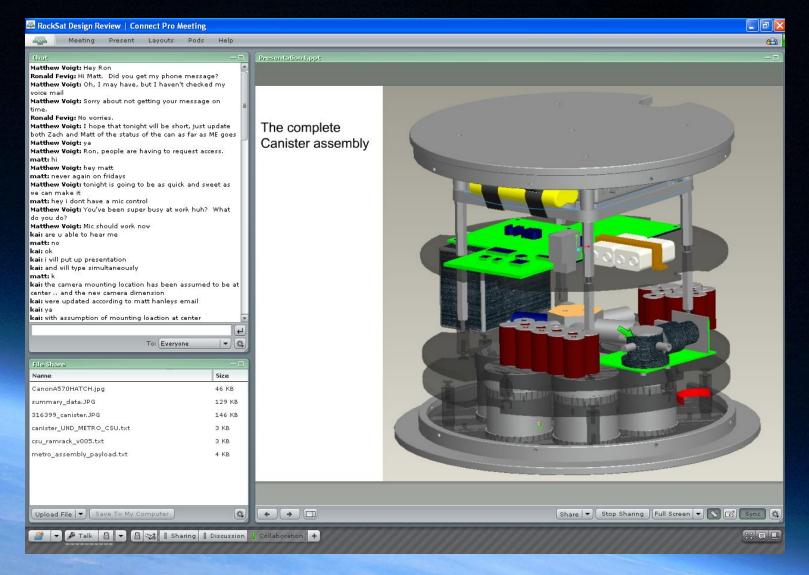
Department of Physics & Astronomy Louisiana State University Baton Rouge, LA 70803-4001

and


Balloon Program Office NASA Wallops Flight Facility Wallops Island, VA

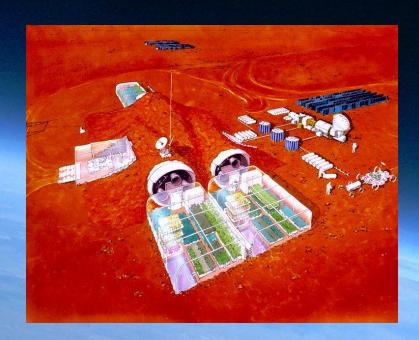
**Q&A** Teleconference: November 12, 2010 **Application Due: December 17, 2010** 

### 2009 RockSat


"The Next Step in Low Cost Student Access to Space"

- UND's payload sampled gases in the mesosphere
- Launch date = June 26, 2009






## Virtual Engineering Teams Coordinating with our canister partners in CO



### HAB Biological Payload Team

Mcnutt, Marty (Lead)
Booth, David
Borzych, Todd
Howell, Elizabeth
Perks, Theresa





### HAB Imaging Payload Team

Holland, Timothy (Lead)

Doby, John Howell, Elizabeth Spencer, Earl





Image taken from a locally-flown, UND high-altitude balloon at about 85,000 ft.

# HAB Launch and Tracking Operations Team

Shallbetter, Wyatt (Lead)

Fitzgerald, Nicole

Haag, Lauren

Ray, Ron

Woida, Matthew



### Superpressure Balloon Mission Architecture Team

Meeks, Denise (Lead)

Booth, David

Borzych, Todd

Boyce, Patrick

Doby, John

Perrin, Thomas

Wilkins, Mary



### Satellite Ground Station Team

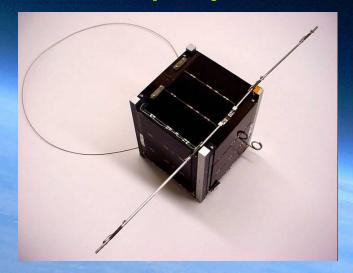
La France, Kayla (Lead)
Spencer, Earl
Anderson, Travis
Dusterhoft, Zachary







# Small Satellite Mission Architecture Team


Lilko, Randall (Lead)

Anderson, Travis
Boyce, Patrick
Perks, Theresa
Perrin, Thomas
Wilkins, Mary



### Getting involved

- Local projects
- Partnering with UND on existing projects
- Undergraduate course offerings
  - Space Mission Design
  - Introduction to Orbital Mechanics
- Future projects?





## Questions?



### Supplementary Slides

#### **Project Title: Near-Space Recovery Technology (NSRT)** 09/01/2010

<u>Faculty Advisor(s)</u>: Ron Fevig, John Nordlie <u>Partners</u>: UND Space Studies, RWIC

#### Near-Space Recovery Technology (NSRT)





#### **Description:**

Winds aloft data acquired via GPS during the ascent of a high-altitude balloon (HAB) will be used to predict and control the landing location of a 2.5 kg HAB payload. Several delivery concepts will be assessed, including the use of a steerable parachute, before settling on the final design for a near-space recovery system.

#### Problems to Solve (Why work on this project?):

- This delivery mechanism would increase the chance of successfully recovering a HAB payload.
- NSRT hardware would diminish the hazards to people, property and HAB instrumentation.
- 3. Development of emergent aerospace technologies.

#### **Technical Proposal:**

<u>Electrical:</u> PIC-based flight computer. GPS, and possibly IMU, flight data acquisition. Servo-control. Power system. Telemetry and command RF equipment.

Mechanical: Servos. Parachute. Parachute deployment mechanism. Cut-down mechanism. Payload housing. Thermal management.

<u>Software:</u> Winds aloft data logging. Descent ground track prediction. Descent flight control.

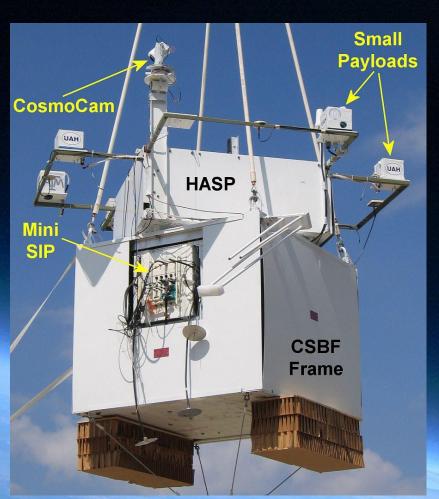
System Integration & Test: (1) Feed simulated GPS data to flight computer. (2) Test in ME thermal/vacuum chamber. (3) Parachute drop tests (with UAV?) (4) High-altitude balloon flights.

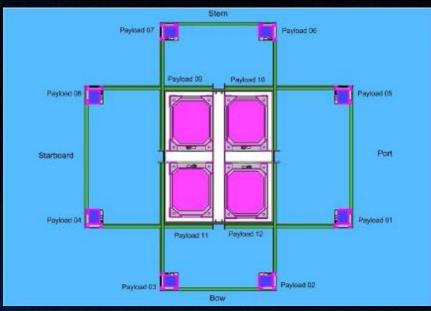
#### **Anticipated Customer Base:**

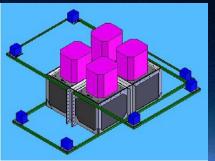
NOAA, University researchers, NASA, DOD

#### **Cost Proposal:**

Funds are available to cover the initial cost estimate of \$1600.


#### <u>Deliverables:</u>


Conceptual Design Review (1 month), Preliminary Design Review (3 months), Critical Design Review (4 months), Assembly, Integration, Testing Report (6 months), Flight Readiness Review (7 months), High-altitude Balloon Flight (8 months), Final Report (8.5 months),


#### Point of Contact:

Ron Fevig Assistant Professor UND Space Studies Department Room 526 Clifford Hall (701)777-6790, rfevig@space.edu

### **HASP & Gondola**



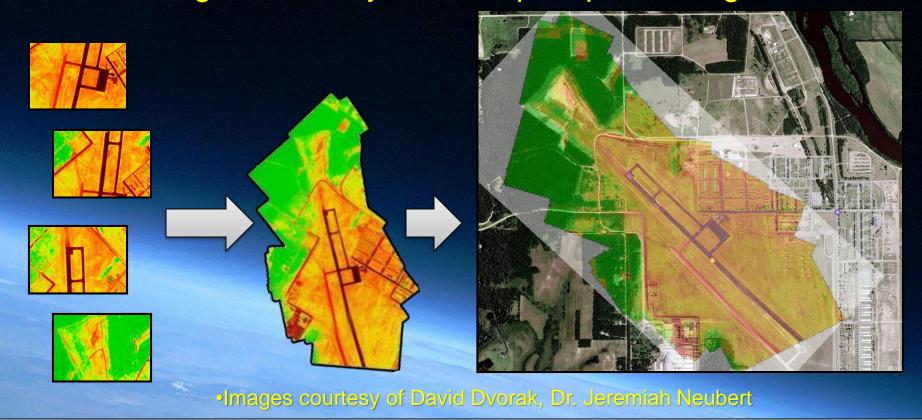




•(HASP Manual, 2008)

## Airborne Real-Time Embedded Mosaicking Imaging System (ARTEMIS)

- Collaborative effort between the Departments of Electrical Engineering and Space Studies
- Imaging system is currently being developed for UAVs


May be implemented on balloon-borne and space-

borne platforms

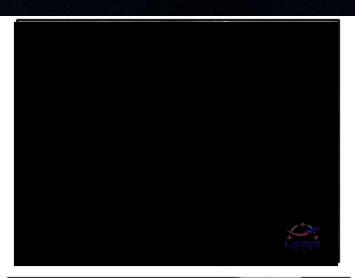


### Image Mosaicking

- Multiple images transformed into a single larger image
- Feature detection (correlation) used to determine overlap
- Mosaicking traditionally involves post processing



### Mosaicking from Video


- Feature detection
- Correlation between frames
- Motion estimation
- Image transformation

#### Size comparison:

Video: 2.78MB (4sec AVI, 15fps)

Image: 25.2 KB (380x290 JPEG)

\* Still image is over 100x smaller \*





### RockSat Timeline

- 08-18-2008 RockSat Payload User's Guide Released
- 09-22-2008 Submit Intent to Fly Form
- 09-29-2008 Initial Down Selections Made
- 10-27-2008 Earnest Payment of \$1,000 Due
- 10-28-2008 Conceptual Design Review (CoDR) Due
- 10-28-2008 Online Progress Report 2 Due
- 11-14-2008 Preliminary Design Review (PDR) Due
- 11-28-2008 Online Progress Report 3 Due
- 12-12-2008 Critical Design Review (CDR)
- 12-19-2008 Final Down Select—Flights
   Awarded
- 01-23-2009 First Installment Due
- 01-30-2009 RockSat Payload Canisters
   Sent to Customers

- 01-30-2009 Online Progress Report 4 Due
- 02-20-2009 Individual Subsystem Testing Reports Due
- 02-27-2009 Online Progress Report 5 Due
- 03-27-2009 Payload Subsystem Integration and Testing Report Due
- 04-10-2009 Final Installment Due
- 04-17-2009 First Full Mission Simulation Test Report Due
- 04-30-2009 Online Progress Report 6 Due
- 05-22-2009 Second Full Mission Simulation
   Test Report Due
- 05-29-2009 Online Progress Report 7 Due
- 06-10-2009 Launch Readiness Review (LRR)
   Teleconference
- 06-(22-24)-2009 MOI and Vibration Testing at WFF
- 06-24-2009 RockSat Payload Canister Integration with WFF
- 06-26-2009 Launch Day!











### Launch: June 26th, 2009 at 5:30am EDT









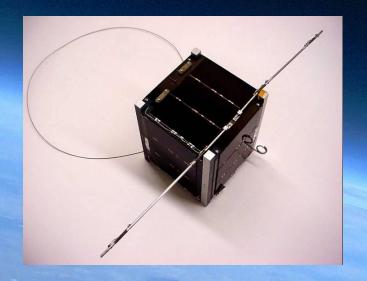




### **UND AmSat Ground Station**






# Laser Communications Hermes

- Digitally modulated laser communication system
- Laser mounted on a UAV gimbal system
- Current design goals
  - 1.5 km fixed ground-ground communication
  - 8 cm receiver aperature
- EE System components
  - Camera
  - Laser transmitter
  - Laser receiver
  - Video converters (modulators)



### Scope of the UA CubeSat Project

- 56 students (20 extremely dedicated)
   Majors from EE, ME, CS, Physics, Planetary Sciences,
   Optical Engineering, Systems Engineering
- 25 faculty mentors
- 36 sponsors
- Cost/satellite ≈ \$250,000 (?)



