### An Intelligent System for Real-Time Stress Alleviation

#### Tom Schanandore, Dallas Brown and Yail Jimmy Kim , Ph.D., P.Eng.



### Contents

- 1. Introduction
- 2. Theoretical Modeling
- 3. Results and Discussion
- 4. Preliminary Conclusions and On-Going Work
- 5. Acknowledgments

### Introduction

#### **Purpose of Research**

- Fundamentally reframe our knowledge of composite materials and structures
- Diagnose potential damage and actively alleviate the damage in real-time



### Introduction

#### **Purpose of Research**

- Develop a detection and trigger system for active stress alleviation
- Provide an advanced data processing method and determine a manufacturing approach
- Determine the best material to use for actuation



### Introduction

#### **Scope of Research**

#### Phase 1:

Determine an experiment procedure and material selection through theoretical modeling

#### Phase 2:

Improve experiment and create active detection and triggering system

#### Phase 3:

Design recommendations for applications involving composite structure stress alleviation

## **Theoretical Modeling** ANSYS (Finite Element Background)

- The finite element method is the process of discitizing a structure or system into smaller parts call elements
- ANSYS elements used:





### **Theoretical Modeling**



### **Theoretical Modeling**



### **Theoretical Modeling**



### **Results and Discussion**

#### **Actuation Reduces Displacement**



### **Results and Discussion** Actuation Reduces Local Stress and Strain



#### **Preliminary Conclusions and On-Going Work**

- Theoretical modeling was successful in reducing localized stress in the composite strip
- These results show that localized stress alleviation of composite materials is a promising concept
- Select best material for physical experiment

   Possible canidates are piezoelectric actuators (PZT) or
   shape memory alloy (SMA)
- Begin phase 2 and 3 of research plan

   Create detection and triggering system
   Design recommendations for practical applications

# SHAPE MEMORY ALLOY ALTERNATIVE

# Material Properties of SMA

- Made of nickel-titanium
- Contract to typically 2% to 5% of their length
- Density = 0.235 lb/in3 (6.45 g/cm3)
- Melting Point = 2370 °F (1300 °C)
- Thermal Conductivity = 10.4 BTU/hr \* ft \* °F (0.18 W/cm \* °C)
- Anti-Corrosive
- Young's Modulus
  - Low Temp Phase = 28-40 GPa
  - High Temp Phase = 86 GPa

# **Testing Size and Electrical Guidlines**

- Diamter size = 0.020in (0.51mm)
- Resistance ohms/inch (ohms/meter) = 0.11 (4.3)
- Pull Force pounds (grams) = 7.85 (3560)
- Approximate Current for 1 Second Contraction = 4000mA

# Cycle Time

- Contraction occurs from the current heating the wire
- Reaction occurs when there is a cooling effect or lack of current
- Current which will heat the wire from room temperature to over 212 °F (100°C) in 1 millisecond
- Any current application will need to be cycled
- Depending on our test results, a cooling method may need to be used

# Options for attaching physically

- Screws
- Wedged into a PC board
- Glued into a channel with conductive epoxies
- Crimping –works the best because the wire expands inside the crimp under loading
- Soldering does not work due to high temps and expansion



### Acknowledgments

#### NASA North Dakota Space Grant Consortium

#### North Dakota Experimental Program to Simulate Competitive Research (EPSCoR) Grant

**SpaceAge Synthetics, Inc.** 





Experimental Program to Stimulate Competitive Research