

University of North Dakota

2015 NASA Student Launch

North Dakota Space Grant Annual Meeting May 4, 2015

NASA Student Launch & Centennial Challenges

An 8 month commitment to design, construct, and launch a high-powered rocket with an operational autonomous ground support equipment.

Maxi-MAV Prize

"Robotically capturing simulated Mars soil samples, loading the samples into a rocket, launching the high-powered rocket to 3,000 feet, and ejecting and returning the soil sample to Earth"

UND Frozen Fury Rocket Team

Launch Vehicle Design

Launch and Recovery

Launch Vehicle Design

Location of Centering Rings (inches)

Payload securing Design

Payload Compartment 3-D View

Payload Compartment Rear View

Launch Vehicle Simulation

Length: 106 inches Diameter: 6.116 inches Mass: 29.2 lbs

Center of Gravity: 64,897 inches Center of Pressure: 80.77 inches Safety Margin: 2.6

<u>Thrust-to-Weight Ratio (stability off rod)</u>

Flight Analysis

Total motion vs. Time

Drift Analysis at 5 mph

U

Launch Vehicle Construction

Full Launch Vehicle

Airframe – carbon fiber

- Superior strength to weight ratio
- Ease of workability

Carbon fiber tubes reception from China (after cutting)

Couplers construction

Fins – birch plywood epoxyed

The epoxy gives it a more rigid, strong, and lightweight structure

Construction of the fins

Epoxying of the fins

Fin Can and Motor Mount

Motor Stage

Nose Cone

Mounting of battery (1800mAh), servo motor and Arduino UNO

Payload Compartment

Avionics: Altimeter Bay

Launch Vehicle complete

Autonomous Ground Support Equipment Design

Rocket in Horizontal Position

AGSE Design

Nearly Completed AGSE

Frame

Placing the actuator mount.

Rocket Lifter

Igniter Insertion System

Side view of the ignition system

Igniter Insertion System

Ignition insertion device assembled Ignition wire (blue) coming out of the protective case

Belt/Slider Rail

Payload acquisition assembly

Test Launches

Two Half scale and Two Full scale launches have been performed

D-Day in Alabama

D-Day in Alabama

D-Day in Alabama

Questions?

https://www.youtube.com/watch?feature=player_detailpage&v=LrokpKTisvE#t=37