Numerical Solutions of a Projectile Motion Model

Chloe Ondracek Advisor: Dr. Narayan Thapa

Department of Mathematics Minot State Unviersity chloe.ondracek@my.minotstateu.edu

May 4, 2015

Chloe Ondracek Projectile Motion Modeling

Outline

- Introduction
- Defining and Solving the Problem
- Fixed Points and Iterative Methods
- Inverse and Optimization Problem
- Numerical Algorithms and Results
- Conclusion

 What is an Inverse Problem?

Figure : Inverse Problems

- What is an Inverse Problem?
- What do they Influence?

Figure : Inverse Problems

- What is an Inverse Problem?
- What do they Influence?
- In this work?

Figure : Inverse Problems

Techniques Needed

- Differential Equations
 - To build model representing projectile motion
- Fixed Points and Fixed Point Iteration
 Numerically solve implicitly defined model
- Optimization
 - Optimize the possible range
- Numerical Methods
 - Solve inverse optimization problem numerically

Defining the Problem

Suppose we launch a point projectile from the origin with

- Initial angle θ (radians)
- Initial velocity v (feet/second)
- Unit mass (1 gram)
- The projectile is then subject to
 - Air resistance with coefficient k

— Gravitational force $g = -32 (ft/sec^2)$

• The total forces can thus be represented by

$$-k\begin{pmatrix} \dot{x}\\ \dot{y} \end{pmatrix} + \begin{pmatrix} 0\\ -g \end{pmatrix} \tag{1}$$

Projectile Motion

Figure : Graph of Projectile Motion

Initial Value Problems

• We can develop a system of two initial value problems (IVPs) to represent the motion of the projectile.

$$\begin{aligned} \ddot{x} &= -k\dot{x} \\ \dot{x}(0) &= v\cos\theta \\ x(0) &= 0 \end{aligned} \tag{2}$$

and

$$\begin{split} \ddot{y} &= -k\dot{y} - g\\ \dot{y}(0) &= v\sin\theta\\ y(0) &= 0 \end{split} \tag{3}$$

 Solving the initial value problems through basic substitution methods, we reach

$$x = \frac{v\cos\theta(1 - e^{-kt})}{k} \tag{4}$$

$$y = \left(\frac{v\sin\theta}{k} + \frac{g}{k^2}\right)(1 - e^{-kt}) - \frac{g}{k}t$$
(5)

Solving the Problem Cont'd

• Solving (4) for t we have,

$$t = -\frac{1}{k} ln \left(1 - \frac{ks}{v \cos \theta} \right) \tag{6}$$

substituting $\left(6\right)$ into $\left(5\right)$ and simplifying we have

$$y = x \left(\frac{v \sin\theta}{k} + \frac{g}{k^2}\right) \left(\frac{kx}{v \cos\theta}\right) + \frac{g}{k^2} ln \left(1 - \frac{kx}{v \cos\theta}\right) \quad (7)$$

Thus we know x is a root of the equation (7). We then have,

$$x = \frac{v\cos\theta}{k} \left(1 - e^{-\left(\frac{k}{v}sec\theta + \frac{k^2}{g}tan\theta\right)x} \right)$$
(8)

Defining Range Function

• The range equals the distance moved in the x direction, thus we can see that $x = R(\theta)$ is a root of

$$R(\theta) = \frac{\cos \theta}{a} (1 - e^{-A(\theta)R(\theta)})$$
(9)

Defining Range Function

• The range equals the distance moved in the x direction, thus we can see that $x = R(\theta)$ is a root of

$$R(\theta) = \frac{\cos \theta}{a} (1 - e^{-A(\theta)R(\theta)})$$
(9)

where

$$\begin{split} A(\theta) &= a \sec \theta + b \tan \theta \\ a &= \frac{k}{v} \text{ and } b = \frac{k^2}{g}, \quad a > 0, \ b > 0. \end{split}$$

Non-Implicit Functional

• In (9) the range value, $R(\theta)$, is defined implicitly. It can be written in equivalent functional form

$$F(\theta, r) = \frac{\cos\theta}{a} \left(1 - e^{1A(\theta)r} \right), \quad r > 0 \& \theta \in \left[0, \frac{\pi}{2} \right]$$
 (10)

• For future reference, note — $a, A(\theta)$ are as defined above — $\theta \in \left[0, \frac{\pi}{2}\right]$ implies $\frac{\cos\theta}{a} > 0$ and $\frac{\cos\theta A(\theta)}{a} > 1$ — $F_r(\theta, r)$ and $F_{\theta}(\theta, r)$ exist and are continuous — $F(\theta, r)$ is classically differentiable and thus continuous on $\left[0, \frac{\pi}{2}\right]$

Fixed Points

Definition A fixed point of a function f is defined as a point p such that f(p) = p.

- Example: $f(x) = x^2$ has two fixed points x = 0 and x = 1
- Graphically, fixed points of a function are intersections between that function and the line

$$y = x$$

Figure : Graph of $y = x^2$ and y = x

Fixed Points of the Functional

• To study the fixed points of functional (10) we work with a simplified, but equivalent form. Let

$$f(x) = C\left(1 - e^{-dx}\right), \quad C > 0, \ Cd > 1, \ \& \ x > 0$$
 (11)

where $C = \frac{\cos\theta}{a}$ and $d = A(\theta)$.

Fixed Points of the Functional

• To study the fixed points of functional (10) we work with a simplified, but equivalent form. Let

$$f(x) = C\left(1 - e^{-dx}\right), \quad C > 0, \ Cd > 1, \ \& \ x > 0$$
 (11)

where $C = \frac{\cos\theta}{a}$ and $d = A(\theta)$.

- It can easily be shown that
 - 0 is a fixed point of f, by definition

— For sufficiently small s, f(s) > s, proof using L'Hopitals Rule

— f(C) < C for C defined as above, from conditions on C

Fixed Points of the Functional Cont'd

• Since *f* is continuous, by the Intermediate Value Theorem, there exists a point, $p \in (0, C)$, such that f(p) = p. Thus, by definition, p is a fixed point of *f*.

Fixed Points of the Functional Cont'd

- Since *f* is continuous, by the Intermediate Value Theorem, there exists a point, *p* ∈ (0, *C*), such that *f*(*p*) = *p*. Thus, by definition, p is a fixed point of *f*.
- It is easily shown that the second derivative of f is strictly negative and thus f is concave down and thus the graph can intersect the line y = x at a maximum of two points in the domain. Since 0 is a known fixed point, we conclude p is a unique positive fixed point.

Fixed Points of the Functional Cont'd

- Since *f* is continuous, by the Intermediate Value Theorem, there exists a point, $p \in (0, C)$, such that f(p) = p. Thus, by definition, p is a fixed point of *f*.
- It is easily shown that the second derivative of f is strictly negative and thus f is concave down and thus the graph can intersect the line y = x at a maximum of two points in the domain. Since 0 is a known fixed point, we conclude p is a unique positive fixed point.
- Furthermore, it can be shown that if f(x) > x, then x < pand consequently $f(x) < x \implies x > p$ for all $x \ge 0$. The proof of this follows from p being unique.

• It follows that for any $x \ge 0$ a sequence $\{x_{n+1} = f(x_n)\}$ will converge monotonically to p. Therefore, for any initial estimate, the sequence of fixed point iterations converges to the fixed point.

- It follows that for any $x \ge 0$ a sequence $\{x_{n+1} = f(x_n)\}$ will converge monotonically to p. Therefore, for any initial estimate, the sequence of fixed point iterations converges to the fixed point.
- The results found while studying fixed point iteration with equation (11) can be applied to (10). From this we conclude that $R(\theta)$ is the unique positive fixed point of $F(\theta, r)$ and the fixed point iteration is a suitable method of solving the implicitly defined functional in (9).

 We work with solving the inverse problem of finding the angle at which a projectile should be launched to reach a suboptimal range. We define

$$g(t) = at = 1 + e^{-(at+b\sqrt{t^2 - R(\theta)^2})}$$
 (12)

 We work with solving the inverse problem of finding the angle at which a projectile should be launched to reach a suboptimal range. We define

$$g(t) = at = 1 + e^{-(at+b\sqrt{t^2 - R(\theta)^2})}$$
 (12)

• Note: $R(\theta)$ is a solution of equation (10) if and only if $t = R(\theta) \sec(\theta)$ is a root of the function g(t) defined in (12). Proof:

$$R(\theta) = \frac{\cos \theta}{a} (1 - e^{-A(\theta)R(\theta)})$$

$$\implies a \sec(\theta)R(\theta) = 1 - e^{-(a \sec \theta + b \tan \theta)R(\theta))}$$

$$\implies at = 1 - e^{-(at+b \tan \theta R(\theta))}$$

$$\implies 0 = at - 1 + e^{-(at+b\sqrt{t^2 - R(\theta)^2})}$$

$$\implies g(t) = 0$$
(13)

The converse can be proved in similar fashion.

Optimization

 We also develop the inverse problem of finding the angle corresponding to the maximum range. Note that the second partial derivative is negative, thus critical points are maximums

$$\frac{\cos\theta}{a} \left(A'(\theta)R(\theta) \right) e^{-A(\theta)R(\theta)} - \frac{\sin\theta}{a} \left(1 - e^{-A(\theta)R(\theta)} \right) = 0$$

$$R(\theta) \left[\tan\theta \left(e^{-A(\theta)R(\theta)} - 1 \right) + c \, \sec\theta e^{-A(\theta)R(\theta)} \right] = 0, \, c = \frac{b}{a}$$

$$\sin\theta - \sin\theta e^{-A(\theta)R(\theta)} - c \, e^{-A(\theta)R(\theta)} = 0$$

$$\sin\theta = (\sin\theta + c)e^{-A(\theta)R(\theta)}$$
(14)

Optimization Cont'd

• Taking arc sine on both sides, which exists since $\theta \in (0, \frac{\pi}{2})$, we can find θ the solution of the inverse problem. In order to compute the angle we must find an equivalent form that is suitably defined. From (10) we can see

$$e^{-A(\theta)R(\theta)} = 1 - a\sec\theta R(\theta)$$
(15)

Substituting (15) into (14) we have

$$\sin \theta = (\sin \theta + c)(1 - a \sec \theta R(\theta))$$

$$\implies R(\theta) = \frac{(c/a)\cos\theta}{\sin\theta + c}$$

$$\implies A(\theta)R(\theta) = \frac{c + c^2 \sin\theta}{\sin\theta + c}$$

$$\implies \sin \theta = (\sin \theta + c)e^{-(\frac{c+c^2\sin\theta}{\sin\theta + c})} \qquad (16)$$

Numerical Algorithms

• For the Direct Problem, we solve our implicitly defined equation (9) using the fixed point iteration method.

Numerical Algorithms

- For the Direct Problem, we solve our implicitly defined equation (9) using the fixed point iteration method.
- For the Inverse Problem, equation (16) can be written in the equivalent form

$$x = e^{hx}, \quad x = \frac{e\sin\theta}{\sin\theta + c} \quad \& \quad h = \frac{1 - c^2}{e}$$
 (17)

The numerical algorithm then solves equation (17) using Newton's Method, setting $\sin \theta = \frac{cx}{e-x}$ and $\theta = \sin^{-1} \left(\frac{cx}{e-x}\right)$.

Results — Direct Problem

Solutions of the direct problem using fixed point iteration.

θ	R	V	R
$\pi/12$	70.88511102176	100	67.34060878040
$2\pi/12$	77.88306236704	300	2.12024170366 ×10 ²
$3\pi/12$	67.34060878040	500	3.53551174056 ×10 ²
$4\pi//12$	48.61653757497	700	4.94974708427 ×10 ²
$5\pi/12$	25.36860773980	900	6.36396102456 ×10 ²
$6\pi/12$	6.01470426990 ×1	01100	7.77817459295 ×10 ²

Table : Values of range for varying values of speed and initial angle with fixed k=1

Results — Direct Problem Cont'd

 The range values computed numerically based on the direct problem.

Figure : Plot of theta vs. range for varying values of speed: v=100,500,1000 and k=1

Results — Inverse Problem

• The following tables compare the angles for varying values of speed, which produce the maximum range.

V	θ
100	0.459362551800941
200	0.347971552133387
300	0.286456352026570
400	0.246237533256279
500	0.217435525427001
600	0.195582070744295
700	0.178320450757590
800	0.164274857263486
900	0.152581613689122
1000	0.142668003658631

Table : Angles which produce the optimum range for varying values of speed

Results — Inverse Problem Cont'd

• In the following figure, the speed starts at V = 100 ft./sec. and is incremented by 10. The graph plots the number of increments along the x-axis and the value of theta along the y-axis.

Figure : Increments of speed vs. value of theta that produces maximum range

Chloe Ondracek Projectile Motion Modeling

Conclusion

- We modeled the range of a point projectile as a function of the angle of elevation based on scientific knowledge.
- We defined the initial conditions and equations of motion to reflect the air resistance on the projectile using trigonometry.
- We then studied fixed points and fixed point iteration, and used iterative methods to numerically solve the equation.
- We solved the inverse problem of finding the angle that produces either the maximum range or a given suboptimal range.
- We showed that the iteration sequence converges monotonically to the fixed point for any positive initial guess, this helps ensure numerical stability.
- We analyzed the relationship between the initial speed, the angle of elevation, and the range.

References

This work was funded by the North Dakota Space Grant Consortium through NASA.

- Charles W. Groetsch, *Inverse Problems, Activities for Undergraduates*, The Mathematical Association of America, 1999.
- Abdelhalim Ebaid, Analysis of projectile motion in view of fractional calculus, Applied Mathematical Modeling 35 (2011) 1231-1239.
- R.D.H. Warburton, J. Wang, J. Burgdorfer, Analytic Approximations of Projectile Motion with Quadratic Air Resistance, J. Service Science Management, 2010, 3:98-105.
- P. Jiang, C.J. Tian, R.Z. Xie, D.S. Meng, Experimental investigation into scaling laws for conical shells struck by projectiles, International Journal of Impact Engineering 32 (2006) 1284⣓1298.

Urszula Libal, Krystian Spyra, *Wavelet based shock wave and muzzle blast classification for different supersonic projectiles*, Expert Systems with Applications 41 (2014) 5097âL"5104.

G. G. Corbett, S. R. Reid, and W. Johnson, *Impact loading of plates and shells by free-flying projectiles: a reivew*, Int. J. Impact Engno Vol. 18, No. 2, pp. 141-230, 1996.

James J. Gottlieb and David V. Ritzel, *Analytical study of sonic boom from supersonic projectiles*, Pro O. Aerospace Sci. Vol. 25, pp. 131-188, 1988.

Thank You

Questions?

Chloe Ondracek Projectile Motion Modeling