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Inverse Problem

• What is an Inverse
Problem?

• What do they
Influence?

• In this work?

Figure : Inverse Problems
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Techniques Needed

• Differential Equations
— To build model representing projectile motion

• Fixed Points and Fixed Point Iteration
— Numerically solve implicitly defined model

• Optimization
— Optimize the possible range

• Numerical Methods
— Solve inverse optimization problem numerically
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Defining the Problem

• Suppose we launch a point projectile from the origin with
— Initial angle θ (radians)
— Initial velocity v (feet/second)
— Unit mass (1 gram)

• The projectile is then subject to
— Air resistance with coefficient k
— Gravitational force g = −32 (ft/sec2)

• The total forces can thus be represented by

−k
(
ẋ

ẏ

)
+

(
0

−g

)
(1)
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Projectile Motion

Figure : Graph of Projectile Motion
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Initial Value Problems

• We can develop a system of two initial value problems
(IVPs) to represent the motion of the projectile.

ẍ = −kẋ
ẋ(0) = v cos θ
x(0) = 0 (2)

and

ÿ = −kẏ − g
ẏ(0) = v sin θ
y(0) = 0 (3)
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Solving the Problem

• Solving the initial value problems through basic substitution
methods, we reach

x =
v cos θ(1− e−kt)

k
(4)

y =

(
v sin θ

k
+

g

k2

)
(1− e−kt)− g

k
t (5)
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Solving the Problem Cont’d

• Solving (4) for t we have,

t = −1

k
ln

(
1− ks

v cos θ

)
(6)

substituting (6) into (5) and simplifying we have

y = x

(
vsinθ

k
+

g

k2

)(
kx

vcosθ

)
+

g

k2
ln

(
1− kx

vcosθ

)
(7)

Thus we know x is a root of the equation (7). We then have,

x =
vcosθ

k

(
1− e−

(
k
v
secθ+ k2

g
tanθ

)
x
)

(8)
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Defining Range Function

• The range equals the distance moved in the x direction,
thus we can see that x = R(θ) is a root of

R(θ) =
cos θ

a
(1− e−A(θ)R(θ)) (9)

• where

A(θ) = a sec θ + b tan θ

a =
k

v
and b =

k2

g
, a > 0, b > 0.
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Non-Implicit Functional

• In (9) the range value, R(θ), is defined implicitly. It can be
written in equivalent functional form

F (θ, r) =
cosθ

a

(
1− e1A(θ)r

)
, r > 0 & θ ∈

[
0,
π

2

]
(10)

• For future reference, note
— a,A(θ) are as defined above
— θ ∈

[
0, π2

]
implies cosθ

a > 0 and cosθA(θ)
a > 1

— Fr(θ, r) and Fθ(θ, r) exist and are continuous
— F (θ, r) is classically differentiable and thus continuous
on
[
0, π2

]
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Fixed Points

Definition
A fixed point of a function f is defined as a point p such that
f(p) = p.

• Example: f(x) = x2

has two fixed points
x = 0 and x = 1

• Graphically, fixed
points of a function
are intersections
between that
function and the line
y = x

Figure : Graph of y = x2 and y = x
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Fixed Points of the Functional

• To study the fixed points of functional (10) we work with a
simplified, but equivalent form. Let

f(x) = C
(
1− e−dx

)
, C > 0, Cd > 1, & x > 0 (11)

where C = cosθ
a and d = A(θ).

• It can easily be shown that
— 0 is a fixed point of f , by definition
— For sufficiently small s, f(s) > s, proof using L’Hopitals
Rule
— f(C) < C for C defined as above, from conditions on C
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Fixed Points of the Functional Cont’d

• Since f is continuous, by the Intermediate Value Theorem,
there exists a point, p ∈ (0, C), such that f(p) = p. Thus,
by definition, p is a fixed point of f .

• It is easily shown that the second derivative of f is strictly
negative and thus f is concave down and thus the graph
can intersect the line y = x at a maximum of two points in
the domain. Since 0 is a known fixed point, we conclude p
is a unique positive fixed point.

• Furthermore, it can be shown that if f(x) > x, then x < p
and consequently f(x) < x =⇒ x > p for all x ≥ 0. The
proof of this follows from p being unique.
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Iterative Methods

• It follows that for any x ≥ 0 a sequence {xn+1 = f(xn)}will
converge monotonically to p. Therefore, for any initial
estimate, the sequence of fixed point iterations converges
to the fixed point.

• The results found while studying fixed point iteration with
equation (11) can be applied to (10). From this we
conclude that R(θ) is the unique positive fixed point of
F (θ, r) and the fixed point iteration is a suitable method of
solving the implicitly defined functional in (9).
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Inverse Problem
• We work with solving the inverse problem of finding the

angle at which a projectile should be launched to reach a
suboptimal range. We define

g(t) = at = 1 + e−(at+b
√
t2−R(θ)2) (12)

• Note: R(θ) is a solution of equation (10) if and only if
t = R(θ) sec(θ) is a root of the function g(t) defined in (12).
Proof:

R(θ) =
cos θ

a
(1− e−A(θ)R(θ))

=⇒ a sec(θ)R(θ) = 1− e−(a sec θ+b tan θ)R(θ))

=⇒ at = 1− e−(at+b tan θR(θ)

=⇒ 0 = at− 1 + e−(at+b
√
t2−R(θ)2)

=⇒ g(t) = 0 (13)

The converse can be proved in similar fashion.
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Optimization

• We also develop the inverse problem of finding the angle
corresponding to the maximum range. Note that the
second partial derivative is negative, thus critical points are
maximums

cos θ

a

(
A′(θ)R(θ)

)
e−A(θ)R(θ) − sin θ

a

(
1− e−A(θ)R(θ)

)
= 0

R(θ)
[
tan θ

(
e−A(θ)R(θ) − 1

)
+ c sec θe−A(θ)R(θ)

]
= 0, c =

b

a
sin θ − sin θe−A(θ)R(θ) − c e−A(θ)R(θ) = 0
sin θ = (sin θ + c)e−A(θ)R(θ) (14)
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Optimization Cont’d
• Taking arc sine on both sides, which exists since θ ∈

(
0, π2

)
,

we can find θ the solution of the inverse problem. In order
to compute the angle we must find an equivalent form that
is suitably defined.
From (10) we can see

e−A(θ)R(θ) = 1− a sec θR(θ) (15)

Substituting (15) into (14) we have

sin θ = (sin θ + c)(1− a sec θR(θ))

=⇒ R(θ) =
(c/a) cos θ

sin θ + c

=⇒ A(θ)R(θ) =
c+ c2 sin θ

sin θ + c

=⇒ sin θ = (sin θ + c)e−(
c+c2 sin θ
sin θ+c

) (16)

Chloe Ondracek Projectile Motion Modeling



Numerical Algorithms

• For the Direct Problem, we solve our implicitly defined
equation (9) using the fixed point iteration method.

• For the Inverse Problem, equation (16) can be written in
the equivalent form

x = ehx, x =
e sin θ

sin θ + c
& h =

1− c2

e
(17)

The numerical algorithm then solves equation (17) using
Newton’s Method, setting sin θ = cx

e−x and θ = sin−1
(

cx
e−x

)
.
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Results — Direct Problem

• Solutions of the direct problem using fixed point iteration.

θ R

π/12 70.88511102176
2π/12 77.88306236704
3π/12 67.34060878040
4π//12 48.61653757497
5π/12 25.36860773980
6π/12 6.01470426990 ×10−15

V R

100 67.34060878040
300 2.12024170366 ×102
500 3.53551174056×102
700 4.94974708427 ×102
900 6.36396102456 ×102
1100 7.77817459295 ×102

Table : Values of range for varying values of speed and initial
angle with fixed k=1
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Results — Direct Problem Cont’d
• The range values computed numerically based on the

direct problem.

Figure : Plot of theta vs. range for varying values of speed:
v=100,500,1000 and k=1
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Results — Inverse Problem
• The following tables compare the angles for varying values

of speed, which produce the maximum range.
V θ

100 0.459362551800941
200 0.347971552133387
300 0.286456352026570
400 0.246237533256279
500 0.217435525427001
600 0.195582070744295
700 0.178320450757590
800 0.164274857263486
900 0.152581613689122

1000 0.142668003658631

Table : Angles which produce the optimum range for varying
values of speed
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Results — Inverse Problem Cont’d
• In the following figure, the speed starts at V = 100 ft./sec.

and is incremented by 10. The graph plots the number of
increments along the x-axis and the value of theta along
the y-axis.

Figure : Increments of speed vs. value of theta that produces
maximum range
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Conclusion
• We modeled the range of a point projectile as a function of

the angle of elevation based on scientific knowledge.
• We defined the initial conditions and equations of motion to

reflect the air resistance on the projectile using
trigonometry.

• We then studied fixed points and fixed point iteration, and
used iterative methods to numerically solve the equation.

• We solved the inverse problem of finding the angle that
produces either the maximum range or a given suboptimal
range.

• We showed that the iteration sequence converges
monotonically to the fixed point for any positive initial
guess, this helps ensure numerical stability.

• We analyzed the relationship between the initial speed, the
angle of elevation, and the range.
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Thank You

Questions?
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