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Project Overview

* Designhed, built, and calibrated an experimental setup to support a
wide variety of geometries and fluid experiments.

* Current study focused primarily on single-phase flow through
rectangular miniature channels with Newtonian distilled water.

* Studying effects of flow through sudden cross-sectional area
expansion and contraction in miniature channels and comparing
results to flow through porous media.



Possible Applications of Research

* Porous media heat exchangers (high surface area to
volume ratio)

e Pathological blood flow when accumulations of fatty
plaques of cholesterol and blood clots increase in the
cavity of the coronary artery [1]

* Optimizing pumping efficiency and thermal processes in
space applications




Experimental Setup
Syringe Pump [::>

* Major Equipment: {@,
1) Syringe pump
2) Test section

3) 10 pressure transducers

10 Pressure Transducers

4) 2 thermocouples
5) Data acquisition device
6) Microscope with high speed digital camera
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Syringe Pump

 Allows testing of complex fluids such as nanofluids
* Flow rates ranging from < 1 nanoliter/min to 300 ml/min
e Push-pull setup with one way valves allow constant flow




Syringe Pump Calibration

e 7 independent flow rates measured each repeated 5 times

* Mean and standard deviation were compiled for all 7 flow rates
* Using a t-distribution table and A = 6 toc / N9°

* \Volumetric flow rate = mean + A =200 % 1.47 ml/min

* Including graduated cylinder and syringe pump uncertainties of £ 0.5
and = 0.0035 ml/min respectively yields a total error of £ 1.70 ml/min
using total error = (x2+y%+z2)%>

* The maximum volumetric flow rate total uncertainty will be £ 1.17%
with a 95% confidence level. [2]



Syringe Pump Calibration
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Expansion/Contraction Test Section

* Total length of 88.9 mm

* Cross-sectional area of 1.59 x 1.59 mm over first 31.75 mm
* Cross-sectional area of 1.59 x 6.35 mm over last 57.15 mm
 Arearatioof4 /1

* 10 pressure taps connected to pressure transducers

* Thermocouples at entrance and exit monitor temperature




Expansion/Contraction Test Section




Porous Media Test Section

* Allows test material to be changed

* 10 pressure transducers

* Thermocouple at inlet and outlet

* Reservoirs located before and after channel

* Channel size can be customized

101.6 mm long

1.59 x 3.175 mm cross-sectional area







Pressure Transducers

* 10 Honeywell pressure transducers

Six Sigma manufacturing process

Minimum life span of 10 million cycles

10 local static pressure measurements on both test sections

Calibrated with a Fluke pressure calibrator




Keysight Data Acquisition Device

» 2 data points per second collected from pressure transducers and
thermocouples

Over 400 independent test runs

Data from each run collected and averaged
Over 260,000 total data points collected




Amscope Microscope

e 225X magnification
* Allows digital pictures of porous samples

* Will be utilized to analyze two-phase flow in future experiments




Porous Media

* Titanium oxide porous ceramics synthesized by Dr. Surojit Gupta

SEM micrographs of (a) fractured surface of the cross section of the green body of Composition
C (Table 1), (b) fractured surface of the cross section of Composition C, (c) fractured surface of
the cross section of Composition E (Table 1), and (d) top surface of the composition E after heat
treatment at 1450 °C for 4 hours (Gupta & Riyad, 2014).



Data Acquisition Methodology

 Steady-state flow measured for 30 seconds at set volumetric flow rate
* Average taken of all 60 pressure measurements
* Procedure repeated at many flow rates

Inlet Thermocouple Outlet Thermocouple

Syringe Pump [::>
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10 Pressure Transducers
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Porous Media Equations

e Darcy’s Law: AP/L = (u/K) U

* Works well for viscous drag dominated flow [3]

* Hazen-Dupuit-Darcy (HDD) model: AP/L = (u/K)*U + C*p*U?
* Works well for viscous and form drag dominated flow [3]

* K = permeability (m”2)

* C = form-coefficient (1/m)



Permeability (K) and Form (C) Values

* Using 2 independent runs and the HDD model allow K and C
to be solved.

* Higher K value is more permeable and less resistive to flow [3]

* Higher C value correlates to higher form drag and more
resistive to flow

e K=5.28 x 10° m?
eC=236m"1!



Viscous Versus Form Drag in Porous Material
Internal Flow

Viscous Drag Form Drag

* Linear increase with average * Parabolic increase with average
velocity velocity

* Permeability (K) dictates flow * Increased or decreased

depending on the physical shape
of the object impeding the flow

* Form coefficient (C) dictates flow



Determining a Reynolds Number for Flow
Through Porous Materials

e Reynolds number (A) based on Permeability and Form Coefficients

¢ A= (9*Co*Ko/bo)*U

y =0.6573x
RZ=1

Average A Value

VeIocit'y (m/s)



Determining the Dominate Drag

* Using: A = (p*Cy*Ky/ ) *U [3]

* When A > 1, flow has departed from Darcy flow and is form
dominated [3]

* When A <1, flow is viscous dominated [3]
* When A =1, flow is affected equally by form and viscous drag.
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Power Required for Flow Through Porous Media

* Power (W) = AP * Volumetric flow rate  [4]

Power required vs Flow Rate
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Fluid Volume Pumped vs. Flow Rate

Fluid volume pumped with 1000 Joules (L)
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Expansion Test Section

* Expansion arearatioof 1to 4

* Borda—Carnot equation

* Energy loss per unit volume: AE,, .= 0.5*p*(1-(A,/A,))*U,?

* Theoretical measurable : AP = (A/A)*(1- (A/A,))*p*U,2

e measured —
* Total needed to move liquid: AP 4+ AE = 0.5*p*(U,%-U,?)

e measure e loss
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Power (W)

Expansion Power Required vs. Flow Rate
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Expansion Total Volume Moved With 1000 Joules
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Contraction Test Section
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Contraction DP Using U = 1.98 m/s and Laminar
Assumptions K_=0.78 Including Losses
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Contraction Required Power Using U =1.98 m/s
and Laminar Assumptions K_=0.78 Including Losses

Power (W)
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Contraction Volume Pumped with 1000 Joules

Volume pumped with 1000 Joules (L)
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Contraction Conclusions

* Using the higher velocity (1.98 m/s) and laminar (K. = 0.78) aligned
best with the empirical data.

* To achieve a fully turbulent environment (Re = 10,000), a velocity of
5.7 m/s is needed, which is 288% higher than the maximum rate
available with the current syringe pump and test section.




Simplified Differential Pressure Equations

* AP = (L)*[(1.9%108 m2)*u*U + 236 m*p*U?]

porous
* AP, = (0.47)*p* U2

* AP_=(1.02)*p* U2



Simplified Required Energy Equations

* E = (L)*A*[(1.9%108 m2)*u*U + 236 m1*p*U?]

porous
* E_ = A¥(0.47)*p* U?2

* E_ = \*(1.02)*p* U2



Simplified Required Power Equations

« 5E/6t = (L)*[961*u*U?% + 0.0012 m*p*U3]

porous
* 5E/6t, = (1.2*10° m?)* (p)* U3

* OB/t = (2.6*10° m?)* (p) * U3



Final Conclusions

* A system was designed, built, and calibrated to test a wide variety of fluids
and conditions.

e 2.2 times more power, energy, and AP are required to flow through the
contraction than the expansion.

* Minimizing flow rate minimized AP, energy and power needed to flow the
liquid.

* Maximizing flow rate maximized AP, energy and power needed to flow the
liquid.

* AP is a function of (U + U2). AP, and AP, are functions of U2.

porous
* SE/6t is a function of (U% + U 3). 6E/6t,and 6E/6t_are functions of U 3.

porous
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