NDSU AIAA Chapter's Competition Teams - AIAA Design/Build/Fly Competition 2015 - AHS Micro Air Vehicle Competition 2015

Dr. Yildirim Bora Suzen NDSU Mechanical Engineering Department <u>Bora.Suzen@ndsu.edu</u>

NDSU MECHANICAL ENGINEERING

North Dakota Space Grant Annual Meeting, April 8-9 2016 Dickinson State College, Dickinson, ND

American Institute of Aeronautics and Astronautics

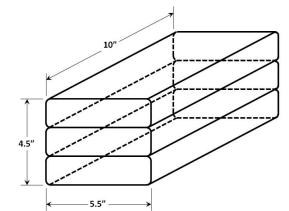
- Started out as two societies in the 1930s
 - American Rocket Society 1930
 - Science fiction writers and editors, performed own experiments
 - Institute of the Aeronautical Sciences 1932
 - Scholars and professionals, amazing library/collection
- Merged in 1963 to form AIAA
 - ▶ 30,000 professional members in 85 countries
 - Over 7,000 student members in over 190 student branches worldwide
 - > 20 technical conferences, 8000 papers per year
 - Hundreds of books, 7 technical journals, short courses, standards, public policy
 - Electronic library of all papers and journal articles since 1963
- AIAA Foundation
 - Established to ensure enduring focus on education of practicing and future aerospace professionals
 - Concentrates on three areas of student programs
 - Design Competitions
 - Scholarships
 - Student Conferences

Established in 2010

- In order to increase student interest in aerospace related technologies and research areas
- to provide research experiences through activities
 - Design competitions
 - Student paper competitions
- Recruit students for graduate studies in aerospace related topic
- Provide guidance and opportunities for aerospace related careers

Competitions:

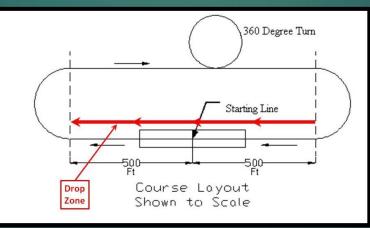
- AIAA Design/Build/Fly (since 2011) (Senior Design)
- CanSat (since 2013)
- AHS Micro Air Vehicle (since 2014) (Senior Design in 2016)


DESIGN/Build/Fly - 2015

- AIAA DBF Cessna & Raytheon
- Electric, Remote
 Control Aircraft
- 1 Ground Mission and
 3 Flight Missions
- Tucson, Arizona

<u>Competition Guidelines</u> Ground mission – Payload loading time

- Mission starts with airplane empty and hatches closed
- Payload for mission 2 is applied
- Remove mission 2 payload and install mission 3 payload
- Must be completed within 5 minutes from start



<u>Competition Guidelines</u> Flight Missions

- Mission 1 Ferry Flight
 - Maximum number of complete laps within 4 minutes
- Mission 2 Sensor Package Transport Mission
 - 3 lap timed flight with sensor package
- Mission 3 Sensor Drop Mission

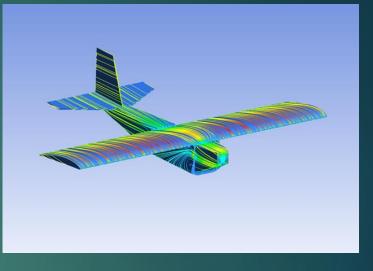
On each lap, the plane will remotely drop a single ball

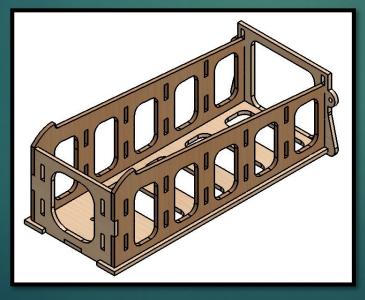
<u>Constraints</u>

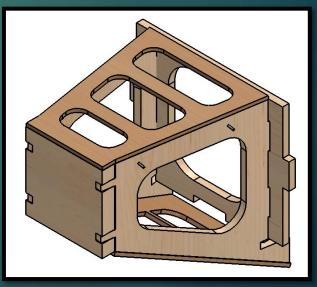
Contest

 Efficient transitions between flight mission configurations

Manufacturability

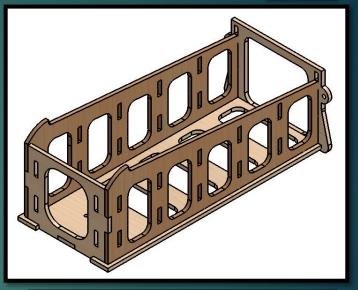

- Laser cut parts
- Simple assembly-tabs
- Performance
 - High carrying capacity
 - Aerodynamically sound
- Budget

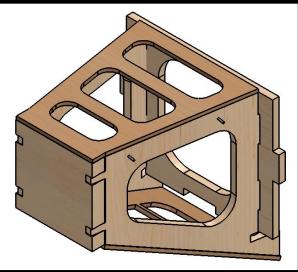



Design and Analysis

Aerodynamics Design
Structural Design
Propulsion

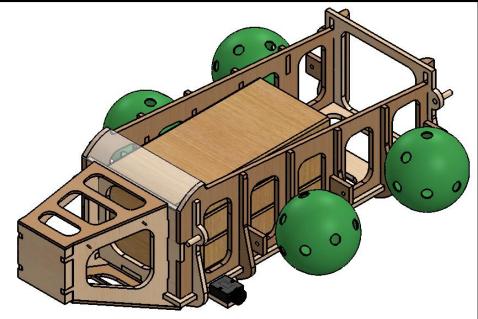
Control and stability

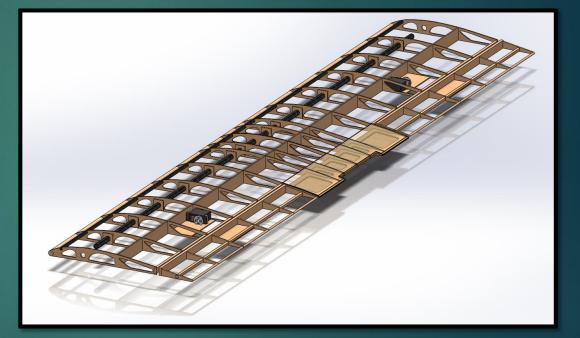




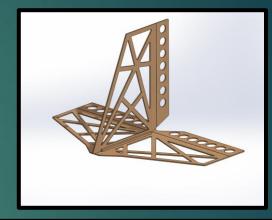
<u>Design - Fuselage</u> Spars/Nose

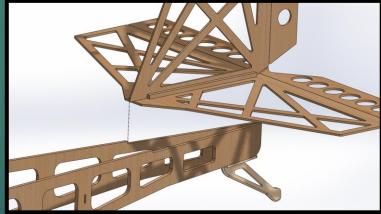
Spars
Aerodynamic
Strength
Nose
Holds batteries and ESC
Primarily basswood


Removable top


<u>Design - Fuselage</u> Final Design

 Design revolves around mission requirements
 Mission 2 payload
 Mission 3 sensor drop


<u>Design - Wing</u> Structure


- Balsa Dowel For Leading Edge
- .5" Carbon Fiber Hollow Tube
- Ailerons Sized 19% of Planform Area

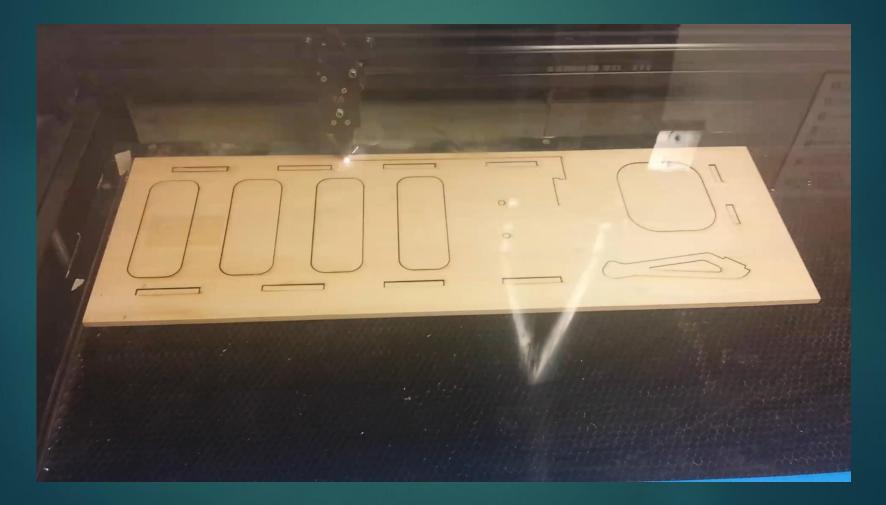
Design - Tail Assembly & Controls

- Weight & Strength
- High strength, rounded corners on most parts
- Hole cutouts & truss- like system
- Elevator controls 20% of chord
- Deflection TBD
- Tail drops into notch on fuselage

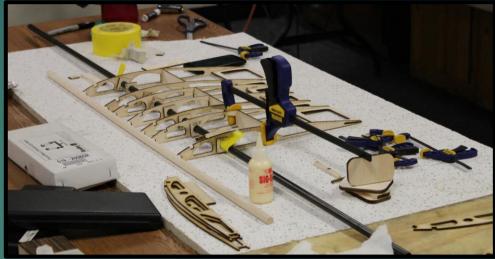


Design - Propulsion Motor and Battery

- Battery limit-2lb
- Initial range = 350 W-500 W
 (Initial Battery)
- Final range = 1000 W 1500 W (Final Battery)
- G.P Rimfire => Axi Gold 20-30
 Cell
- 1500mAh battery & 50 amp ESC
 => 1080 W, 33.6 V
- ~3.5 minutes flight time @ full power


Final Design

- Overall length = 51.2"
 Overall Wingspan = 64.9"
- Dry Weight = 5.53-lbs
- Cruise Speed of 40-50 MPH
- Capable of 7 Minute Flight at Full Power
- Capable Dropping 4 Champro Balls

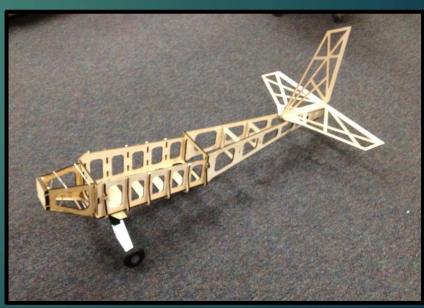

<u>Manufacturing</u> - <u>Laser Cutting</u>



Manufacturing

- Wing Group

- Simple, tabbed assembly using SIG Bond glue
- Wing group => Structure, controls covering, electronics
- Proved strong with only one carbon fiber rod



<u>Manufacturing</u> - <u>Fuselage Group</u>

Additional use of tabs
Lightweight, strong SIG glue
Simple, fast assembly

Manufacturing - Complete Assembly

Testing

- Maiden Flight: Fort Collins, CO
- Initial flight testing:
 - flight time
 - speed
 - flight characteristics
- Propeller testing
 - ► 10x8
 - ▶ 11x7
 - ► 12x6

Testing

Mission testing

- 5 lb payload test
- Increments
- Ball drop ground test
 - Payload load time
- ▶ Wing extensions, 16 in.
 - More lift, less speed
 - Dominated by wind
- Extensions removed
 - Less drag
 - Could pass tip test

<u>Competition</u>

Friday through Sunday

- 84 Teams Competed
- Process:
 - Tech Inspection
 - ► Flight Line
 - Ground Mission

<u>Competition</u>

- Emergency Purchases
- Battery Charging
- Repairs
- Discussion with Fellow Competitors
- Chaotic

Competition

► Chaotic

<u>Competition</u>

Ground Mission
 Reattempt
 Flight Mission 1
 Battery Issues
 Very Stable Aircraft
 Flight Mission 2
 Takeoff Box
 Battery Capacity

<u>Competition</u>

Crash!

- ► Unrepairable
- No Ground Mission Reattempt
- ▶ 56th out of 84 Teams

2016 Competition

- Design/build/fly two planes
- One will be transported inside the other plane
- Assembled on the ground and flown additional missions

NDSU MECHANICAL ENGINEERING

AHS MAV: NDSU Predator Quad

Advisor: Dr. Bora Suzen Students: Mitchel Nordahl, Luke Novak Adam Stolt, Emily Nordahl

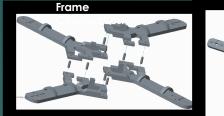
Completed

Innovation

- Flying a micro air vehicle under 500g that is capable of a reasonably long flight time
- Ability to be flown out of the line of sight

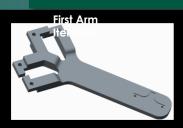
Goals

- To produce a micro aerial vehicle that is capable of:
- Vertical take off and landing
- Flown out of view of the pilot
- Successfully acquire a target
- Hover over target location for set time
- Maintain stable flight


New & Progressive

- Quadrotor design
- Low weight & ease of flight
- Innovative 3D printed frame
- Parts made to be integrated easily
- Camera hinge & housing
- OpenCV used for visualization
- Python scripted commands

Methods Tested


North Dakota

- Carbon fiber frame
- Not precise & sturdy enough
- Higher pitch props
- Too much wobble
- Lighter motors
- Not enough thrust
- 3DR Pixhawk Setup
- Two batteries needed

🔅 STUDENT FOCUSED 🕴 LAND GRANT 🚳

Target Acquisition

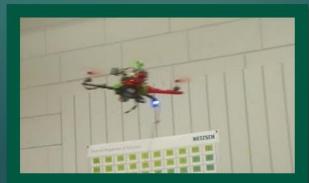
Electronics

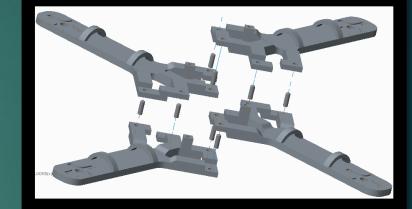
- The Quad System utilizes the APM 2.6 control board & Mission Planner software to maintain a stable flight.
 - Camera(1.8 mm focal length)
- 3DR Transmitter
- 6A UBEC Speed Controllers
- AR610 Receiver
- Eflight 250 2200kv Motors
- 5x3 Props
- 11.1 V 1000 mAh Battery
- Turnigy Volt Meter
- Custom Kill Switch

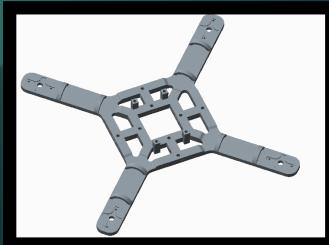
Structure

- 3D printed frame PLA
 - Four motor arms
- Battery & sonar below frame
- Controller, Receiver, & Transmitter above frame
- Custom camera holder
 → 470 grams weight

Top Electronics


State University


Competition 2015


- Vertical take-off and land capable
- Must be less than 500 grams
- Must be no larger than 17.7inches in any direction
- Must detect 1 target and return to home

2015 Design

- Consisted of four identical wings.
- Were pinned together with breakable pins. This reduced damage to the vehicle because the pins would fail before the wings would.
- Was entirely 3D printed.
- The entire vehicle system weighed 470 grams.
- Incorporated a camera and a sonar sensor for video and altitude detection.

Competition 2016

- Vertical take-off and land capable
- Must be less than 500 grams
- Must be no larger than 17.7inches in any direction
- Must find 3 targets individually
- Must avoid an obstacle in the search area
- Must return to home after finding all the targets

2016 Design

- Similar to last year's design in regards to electronic components.
- Added another sonar sensor for obstacle detection
- This year has one solid piece frame.
- Vehicle weighs about 475 grams.
- This year we will be attempting fully autonomous flight.

Students Involved

- ► AIAA DBF Team:
 - Eric Cochrane
 - Mathew Sharpe
 - Ryan Solstad
 - Jake Williams
 - Greg Matson
 - Luke Novak
- MAV Team:
 - Mitch Nordahl
 - Emily Nordahl
 - Adam Stolt
 - Luke Novak
- AIAA student members

Thanks to North Dakota Space Grant Consortium making these experiences possible.