NASA Rover Challenge

Lisa Meyer & John-Luke Singh

Overview

- Introduction
- Project Description
- Design Components
- Competition Performance
- Questions

The Team

Nathan Hanson, Lisa Meyer, Dr. Ghodrat Karami, John-Luke Singh, Patrick Bergh

Project Description

- Design and Assembly a Human Powered Rover
- Research and Development of Technology
 - Course Completion Performance
- Promote Interest in NASA for Aspiring Engineers

Objectives

- Reduce Assembly Time
- Increase Traction
- Improve Handling
- Repair Braking System

Constraints

- 50% Structure Change
- Complete Wheel Fabrication
- Able to be Carried 20 ft.
- Fit Inside 5 ft. Cube

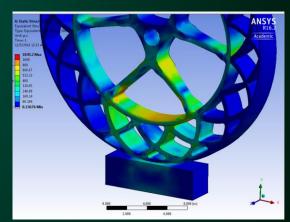
Folding Pedal Support Design

Objective:

Improve Assembly Time

Constraint:

Fit Inside a 5' Cube


Wheel Design

Objective: Increase Traction

Constraint:

Lightweight and Durable

Wheel Design

Objective: Increase Traction

Constraint:

Lightweight and Durable

Spindle Design

Objective:

Create Castor Angle

Constraint:
Suspension Arm
Geometry

Spindle Design

Brake Design

Objective:
Create Castor Angle

Constraint:
Suspension Arms

Brake Design

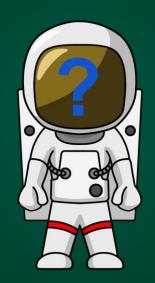
Competition Performance

NDSU NORTH DAKOTA STATE UNIVERSITY

Competition Performance

Competition Performance

Special Thank you to the North Dakota Space Grant Consortium



Questions

