Structural Health Monitoring of Aerial Vehicles After Impact

- Spring 2017 Space Grant Conference April 7-8, 2017
- Peter Henson, MS Space Studies Student University of North Dakota
- peter.henson@UND.edu

Health Concept
Experiment Set-Up
Results
Possible Future Work

Trivial Health Monitor Examples

Mission No. 1 Corneria Permer Army Base

SQUIRTLES

Lu5

CHARMANDER

FALCO

Lu5

NUTOMATION

20/ 20

Health Monitoring

Nondestructive Inspection (NDI) – determine damage using technology without affecting its future usefulness

Structural Health Monitoring (SHM) – use of NDI coupled with sensing to allow for rapid, remote, and real-time condition assessments

Score: 0400 Health: 100.0%

	-iei-		- E E-
			E = = = =
- Alternative	- Remains		- <u></u>

Composite Materials Used in Boeing 787 Body

Material Acquisition: Thermo-Lite Board®

Fiber-reinforced urethane product ideal for applications subjected to static and dynamic loads including uses in

- Boat Hulls
- Ambulance
- RVs
- Multipurpose Arenas

Composite Materials Used in Boeing 787 Body

Experimental Plan of Attack

Prepare/Acquire Material Conduct Impact Tests Evaluate Damage

Simulate Effect on Flight Attitude

Predict/Test Residual Strength

Low Velocity Impact Tests

NDSU Steel Bridge Team

Design Steel Drop Tower

PE = mgh, here PE = potential energy, measured in Joules (J); m = mass, measured in kilograms (kg);

g = gravitational force = 9.81 m/s² on Earth; and

h = height, measured in meters (m)

Low Velocity Impact Tests

Instron 9250 HV Dynatup Shock Tower

- Applications in aerospace, automotive, and the biomedical materials
- Pneumatic hydraulic system used to raise and lower weight
- Follows ASTMD2444 Testing Standard
- Spectrometer used to collect velocity data
- Calibration of load cell prior to tests
- Electronic control to jog the height of weight

Low Velocity Impact Data

Er

Summary of 5 4"x4" Specimens

- Heights: 0.05 0.25 m
- Velocities: 1.00 2.25 m/s
- Energies: 4 20 J

Impact ergy Level <i>(J)</i> :	4 J	8 J	12 J	16 J	20 J
op Weight (kg):	7.7271	7.7271	7.7271	7.7271	7.7271
eight <i>(m):</i> Input	0.0528	0.1056	0.1585	0.2113	0.2642
Velocity (m/s): Aeasured Velocity	1.0175	1.4389	1.7624	2.035	2.2752
(m/s):	0.9808	1.421	1.7389	2.026	2.2695
mpacted elephant skin side image					
Opposite Inded side image					

High Velocity Impact Tests

Ballistic Gas Gun

- Gas tank rated at 350 psi
- Electronic control system
- Pneumatic ball valve
- Aluminum bullet-shaped sabot

 $KE = \frac{1}{2}mv^2$ where KE = kinetic energy, measured in Joules (J); m =mass, measured in kilograms (kg); and v = velocity of the projectile, measured in meters per second (m/s).

Velocity Calibration of Infrared Chronographs

						400 (s/t) (ff/s) 200 100))	Pressure <i>psi</i> 20 20 20 20 Avera	Front Chronograph <i>fps</i> 164 185 162 180 age 20 psi	Back Chronograph <i>fps</i> 182 186 180 182	289.7
					-	() _ 0	00 30 30 30	elocity: N/A N/A N/A	182.5 232 233 230	50 60
Chronograph Rea	ading Rav	w Data						30	68	233	
Input Pressure	psi	30	20	30	50	40		Avera Ve	age 30 psi elocity:	232	
Facat								40	230	263	
Chronograph	#/a	107	164	N/A	N/A	NI/A		40 Avera	227 age 40 psi	264	
velocity	<u>J</u> <u></u> <u>v</u> s	197	104	N/A	N/A	N/A		Ve	elocity:	263.5	
Back								50	77	290	
Chronograph	e (50	81	291	
Velocity	<u>ft</u> /s	N/A	182	232	233	23		50	0	288	

High Velocity Impact Data

Impact Energy Level	4 J	8 J	12 J	16 J	20	
Drop Weight						
(kg):	7.7271	7.7271	7.7271	7.7271	7.7:	
Height <i>(m):</i> Input Velocity	0.0528	0.1056	0.1585	0.2113	0.2	
(m/s): Measured Velocity	1.0175	1.4389	1.7624	2.035	2.2	
(m/s):	0.9808	1.421	1.7389	2.026	2.20	
Impacted elephant skin side image		•			•	
Opposite sanded side image	40)

Invalid test by ASTM standards

Barely visible damage

Damage Characterization

Sheep Ultrasound Workshop

Dec. 1, 2012 11 a.m.–3 p.m. **NDSU Sheep Unit in Fargo** (corner of I-29 and 19th Ave. N.)

Damage Characterization

NDSU RESEARCH AND TECHNOLOGY PARK

Sonoscan Gen5[™] C-Mode Scanning Acoustic Microscope (C-SAM)

Input Parameters

- Frequency of wave = 30 MHz
- Time of flight = 17.2 μs
- Trigger = 1.165
- Top gain = 33.0 dB
- Bottom gain = 26.5 dB
- Scanning area = 1.008" x 1.008"
- Resolution = 512 x 512 pixels (this resolution was sufficient compared to higher resolutions, but did not take as long to scan)

Ultrasonic Images

Residual Strength Predictions

Health

Points

HP

% of

14

$$T = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}, \ d = \begin{bmatrix} \gamma_{max} & 0 \\ 0 & \gamma_{min} \end{bmatrix}, \ and \ T^{T} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$I = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \gamma_{max} & 0 \\ 0 & \gamma_{min} \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
$$Health Points = HP = \left\{ 1 - \frac{[I(\gamma_{max})]}{I} \right\} U_{0}$$

Impact Energy Level	Maximum Feret Diameter	Minimum Feret Diameter	Maximum Feret Diameter	Minimum Feret Diameter	Feret Angle	Length Along Maximun Damage
KE	Ymax	Υmin	Ymax	Υmin	$ heta_F$	L

(L)	(pixels)	(pixels)	(inches)	(inches)	(°)	(inches)	U
4	185.7	149.4	0.366	0.294	101.5	4.285	0.9
8	217.2	190.0	0.428	0.374	147.4	4.947	0.9
12	220.0	197.8	0.433	0.389	95.5	4.211	0.8
16	240.1	223.9	0.473	0.441	163.3	4.361	0.8

 $I = T^T dT$

Future Work

For publication,

- Tensile testing
- Scans of high-velocity impacts
- Verify compare residual health prediction
- Aerodynamic model? For research topic,
- More impact data (effect of multiple impacts?)
- Varying material
- Defining how much damage is critical
- Building full-circle algorithm
- Optimizing software
- Lab testing & In-service testing
- Validation
- Standardization
- Proving its cost-benefit

Stacking Sequence	Material Properties of Lamina
cfm/90/0/core/0/90/cfm	Young's Modulus = E = 4,269 MPa Density = ρ = 40 lbs/ft ³

Aerodynamic Response

ţ.

Acknowledgements

Department of Civil and Environmental Engineering

Educating tomorrows leaders today

ELECTRICAL AND COMPUTER ENGINEERING

References

Bergant, Zoran, Joseph Janez, and Janez Grum. "Ultrasonic Testing of Glass Fiber Reinforced Composite with Processing Defects." The 12th International Conference of the Slovenian Society for Non-Destructive Testing (2013). EBSCO. Web. 1 Mar. 2016.

Diamanti, K., Soutis, C. (2010). "Structural health monitoring techniques for aircraft composite structures." *Progress in Aerospace Sciences*, 46, 342–352.

Fukunaga, Hisao, and Dr. Ning Hu. "Development of Health Monitoring Techniques for Composite Structures." Department of Aerospace Engineering, Tohku University, Japan. Web. 20 Dec. 2015.

Kas, Y. Onur, and Cevdet Kaynak. "Ultrasonic (C-scan) and Microscopic Evaluation of Resin Transfer Molded Epoxy Composite Plates." *Ultrasonic (C-scan) and Microscopic Evaluation of Resin Transfer Molded Epoxy Composite Plates* 24.24 (2005): 114-20. *Elsevier*. Web. 15 Apr. 2016.

Pearson, James, Mohanraj Prabhugoud, Mohammed Zikry, and Kara Peters. "In-Situ Failure Identification in Woven Composites Throughout Impact Using Fiber Bragg Grating Sensors." Web. 12 Dec. 2016. Soutis, C. (2005). "Carbon fiber reinforced plastics in aircraft construction." *Material Science and Engineering*, 412, 171–176.

Material Preparation

Manufacture In-House

Seek Donation

Good News

Good News: Flying manned/unmanned aircraft/spacecraft is beneficial

- Speed
- Comfort
- Cost
- Safety
- Space
- Science!!

Bad News

Aerial vehicles are vulnerable to external impacts such as

- Birds
- Debris

 Micrometeorites,
 Which can be costly as well as life-threatening.

180.15

Low Velocity Impact Data

Low-Velocity Impact Forces

● 4 J ● 8 J ● 12 J ● 16 J ● 20 J