NDSU

Diverse Applications of Engineering: From Attitude Control Systems to Characterization of Spider Silk

Bradley Hoffmann

Graduate Student in Mechanical Engineering North Dakota State University

Summer Internship Experience Goddard Space Flight Center

On-Board Orbit Propagation Model Verification of Dellingr CubSat Mission

Fall Fellowship Experience Mechanical Engineering

Embedding Biomimetic Silk Fibers and Thin Films with Carbon Nanotubes (CNT)

Summer Internship Experience : Goddard Space Flight Center

On-Board Propagator

- Mimicking TRMM Orbit Determination
- Atmospheric Drag
- Gravity Model

Attitude Control Systems Engineering Branch (591)

Methods

• Attitude Control Systems (ACS) main routine

- Testing and debugging
- Two-week duration simulations
 - Four main perturbing forces

- Quicker run-time
 - Debug and validation testing
- On-board ephemeris to GMAT
 - Success, divergence < 200 Km
- Enhancement of gravity model $U(r) = \frac{\mu}{r} \left\{ 1 + \sum_{n=1}^{\infty} \left(\frac{R}{r}\right)^n \sum_{m=0}^n P_n^m(sin\lambda') [C_n^m cos(m\phi) + S_n^m sin(m\phi)] \right\}$

- A. Geopotential Modeling (J21 vs J4)
- B. Atmospheric Drag (J21)
- C. Solar Radiation Pressure (J21)
- D. Presence of Sun/Moon (J21)

Results - Propagation

Comparison of Semi-Major Axis Orbital Element

C. Delta Semi-Major Axis

C

- On-Board J4 and J7 tests with and without Drag (Blue)
- GMAT J4 and J7 tests with and without Drag (Orange)

Discussion of Internship

- Spacecraft propagation integrated into Dellingr ACS main routine.
- On-Board J4 gravity Magnitude divergence of 472.7 Km after two weeks.
- Enhancement of gravity model decreased divergence to 346 Km.

$$U(r) = \frac{\mu}{r} \left\{ 1 + \sum_{n=1}^{\infty} \left(\frac{R}{r}\right)^n \sum_{m=0}^n P_n^m(\sin\lambda') [C_n^m \cos(m\phi) + S_n^m \sin(m\phi)] \right\}$$

Fall Fellowship Experience : Mechanical Engineering

Golden Orb Weaving Spider (*Nephila clavipes*)

Silkworm (*Bombyx mori*)

Background	d	Fiber Struc	eture	Contraction of the second seco	
	Material	Strength (GPa)	Strain (%)	Toughness (MJ/m ³)	[2], [3]
-	Major Ampullate Silk	1.5	21-27	136-194	
	Silkworm Silk	0.61-0.74	18	50	
	Minor Ampullate Silk	0.92-1.4	22-33	137	
	Flagelliform	1	>200	75-283	
	Aciniform Silk	1.1	40	230	
	Kevlar	3.0	2.5	50	
	High-Tensile Steel	1.8-3.0	1.5-5	70	
	Nylon	0.75	18	70	

Background

[4], [5]

Methods

Methods

Sonication

Mechanical Testing:

- Rate of Extension: 12.5 mm/min
- Gauge Length: 50 mm

Results

Results

Discussion of Fellowship

Proteins are dependent on four main stimuli:

- pH change
- ionic change
- mechanical shear
- hydration

Dispersions of CNT's were investigated with sonication

CNTNF was compared to CNTC

A new dispersion technique needed to be investigated.

Optimization of CNT percentage needs to be conducted for conductivity

Current Works

	Peak Stress (MPa)		Breaking Strain (%)		Young's Modulus (MPa)	
Homogenized Samples	5000 RPM	10000 RPM	5000 RPM	10000 RPM	5000 RPM	10000 RPM
Neat Films	2.04 ± 0.07	2.17 ± 0.084	95.40 ± 5.64	74.44 ± 8.39	14.06 ± 0.19	12.68 ± 0.44
CNTNF	1.38 ± 0.12	1.84 ± 0.17	23.14 ± 3.41	56.51 ± 10.78	16.71 ± 1.47	17.46 ± 3.70
CNTC	2.28 ± 0.11	2.38 ± 0.20	93.13 ± 7.27	68.08 ± 6.42	12.15 ± 0.66	32.25 ± 10.57

Neat Fiber

Carbon Nanotubes Non-Functionalized (CNTNF)

Carbon Nanotubes Functionalized COOH (CNTC)

	Peak Stress (MPa)	Breaking Strain (%)	Young's Modulus (MPa)
Neat Fibers	12.97 ± 6.18	0.004 ± 0.001	3801.9 ± 366.9
CNTNF Fibers	11.46 ± 3.26	0.009 ± 0.002	1634.7 ± 464.4
CNTC Fibers	20.24 ± 3.61	0.01 ± 0.002	2562.6 ± 506.1

References

[1] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control. New York, NY: Springer New York, 2014.

[2] A. Rising and J. Johansson, "Toward spinning artificial spider silk," Nat. Chem. Biol., vol. 11, no. 5, pp. 309-315, Apr. 2015.

[3] F. K. Ko, S. Kawabata, M. Inoue, M. Niwa, S. Fossey, and J. W. Song, "Engineering Properties of Spider Silk," MRS Proc., vol. 702, Jan. 2001.

[4] B. Hoffmann, A. Nodland, C. Gruat-Henry, and A. Brooks, "Using Engineering To Unravel The Mystery of Spider Silk Fiber Formation," *Biomed. Sci. Instrum.*, vol. 52, 2016.

[5] B. Hoffmann, C. Gruat-Henry, P. Mulinti, L. Jiang, B. D. Brooks, and A. E. Brooks, "Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers," *PLOS ONE*, vol. 13, no. 4, p. e0195522, Apr. 2018.

[6] S. Sampath and J. L. Yarger, "Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study," *RSC Adv.*, vol. 5, no. 2, pp. 1462–1473, Dec. 2014.

[7] M. Elices, G. R. Plaza, J. Pérez-Rigueiro, and G. V. Guinea, "The hidden link between supercontraction and mechanical behavior of spider silks," *Journal of the Mechanical Behavior of Biomedical Materials*, vol. 4, no. 5, pp. 658–669, Jul. 2011.

[8] F. Zhang, X. You, H. Dou, Z. Liu, B. Zuo, and X. Zhang, "Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution," *ACS Appl Mater Interfaces*, vol. 7, no. 5, pp. 3352–3361, Feb. 2015.

NDSU

Acknowledgements

- Dr. Amanda Brooks
- Dr. Long Jiang
- Dean Chai
- Salman Sheikh
- ND NASA Space Grant Consortium
- Goddard Space Flight Center: Attitude Control Systems Engineering
- NDSU: Mechanical Engineering Department
- NDSU: Pharmaceutical Sciences Department

NDSU

Thank You!

Questions?