Engineering Systems in High Altitude Balloóning

Peter Henson
peter.henson@ndus.edu

Near-Space Ballooning Competition (NSBC)

- Payload design competition
- All students from grades 6-12 in North Dakota!!
- Funded by the North Dakotå Space Grant Consortium
- Student-led, semester-long project

Construction

- Students build the payload, or the container, for the experiment
- Commonly used materials: Styrofoam, zip ties, hot glue, strapping tape, duct tape, Velcro, and vinyl tubing

Digital Conference Calls with Teams

Visit Teams

10

2017 Total Solar Eclipse Payload

2017 Lunar Martian Habitat Balloon EVA Payload

Chase Team Tracking

- HAM Radio
- Iridium Satellite Modem
- SPOT Tracker

Sensor Package \#1
Air Quality Monitoring

- Arduino microcontroller
- MiCS Alcohol Sensor
- CCS811 Gas Sensor
- VEML6070 UV Light Sensor
- Photocell
- Datalogging Shield

Sensor Package \#2

Environmental Monitoring

- MCP9808 Temperature
- BMP280 Pressure
-Si7021 RH\%

Accelerometer/Gyrometer/Magnetometer Compass System

Ranges:

- $\pm 2 / \pm 4 / \pm 6 / \pm 8 / \pm 16 \mathrm{~g}$
- $\pm 245 / \pm 500 / \pm 2000 \mathrm{dps}$
- $\pm 2 / \pm 4 / \pm 8 / \pm 12$ gauss

Solar Power Circuit

- 6V Solar Panel
- Lithium Polymer/Ion Batter
- Voltage Proportional Charge Controller
- 4700 micro Farad capacitor
- DC/DC boost converter chip

B alloon L ine

A utonomous I nstrument, [Using] Nichrome [Wire and] E lectricity

Nichrome Wire Cutdown System

- High melting point
Specifications
Composition: 80\% Ni, 20\% Cr
Specific Resistance:
650Ω per circular mil-foot at $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right)$. See table below for multiplication
factors to obtain resistance at other
temperatures.
Specific Gravity: 8.41
Density: $0.304 \mathrm{lb} / \mathrm{in}^{3}$
Melting Point: Approx
$1400^{\circ} \mathrm{C}\left(2550^{\circ} \mathrm{F}\right)$
Nominal Coetticient of Linear
Expansion: $0.000017\left(10\right.$ to $\left.1000^{\circ} \mathrm{C}\right)$
Tensile Strength $\left(\mathrm{lb} / \mathrm{in}^{2}\right)$ at
$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right):$
Soft Annealed: 100,000
Nominal Temperature
Coefficient of Resistance:

How hot do we need the wire?

- $6.50 \Omega / \mathrm{ft}$
- Need ~1400우
to cut the nylon rope
- 2.53 amps will do the trick

AWG	$\begin{gathered} \text { Dia. } \\ \text { mm (1") } \end{gathered}$	$\begin{gathered} \Omega \text { per ft } \\ @ 20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right) \end{gathered}$	Current Temperature Characteristics* ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$						Model No.
			$\begin{aligned} & \hline 425 \\ & (800) \end{aligned}$	$\begin{gathered} 550 \\ (1000) \end{gathered}$	$\begin{gathered} 650 \\ (1200) \end{gathered}$	$\begin{gathered} 750 \\ (1400) \end{gathered}$	$\begin{gathered} 875 \\ (1600) \end{gathered}$	$\begin{gathered} 1100 \\ (2000) \end{gathered}$	
18	1.0 (0.040)	0.4062	8.32	10.17	12.48	15.11	18.06	24.03	N180-040-(t)
20	0.81 (0.032)	0.6348	6.17	7.56	9.24	11.13	13.23	17.57	N180-032-(t)
22	0.64 (0.0253)	1.015	4.62	5.62	6.85	8.20	9.69	12.85	N180-025-(t)
24	0.51 (0.0201)	1.609	3.46	4.18	5.06	6.04	7.10	9.40	N180-020-(t)
26	0.40 (0.0159)	2.571	2.62	3.12	3.76	4.49	5.27	6.90	N180-015-(t)
28	0.32 (0.0126)	4.094	1.98	2.38	2.84	3.37	3.93	5.09	N180-012-(t)
30	0.25 (0.010)	6.50	1.50	1.81	2.14	2.53	2.93	3.75	N180-010-(t)

Ref: Nichrome Wire specifications from datasheet
https://www.omega.com/temperature/pdf/NI80.pdf

How long should our Nichrome Wire be?

Ohm's Law

$$
K=\frac{Y}{I} R
$$

$$
\begin{aligned}
& \text { resistance }(\Omega / \mathrm{ft}) \times \text { length }(\mathrm{ft})=\frac{\operatorname{voltage}(\mathrm{V})}{\operatorname{current}(A)} \\
& \text { Length }(\mathrm{ft})=\frac{\operatorname{voltage}(V)}{\text { resistance }(\Omega / \mathrm{ft}) \times \operatorname{current}(A)}
\end{aligned}
$$

$$
\text { Length }=\frac{6 \mathrm{~V}}{(6.5 \Omega / \mathrm{ft}) \times(2.53 \mathrm{~A})}=0.36 \mathrm{ft} \approx 4 \frac{3}{8} \text { inches }
$$

Demo \#1

Demo \#2

Eile Edit View Iools Add Help
V Search

Future Work for BLAINE

- Redesign using newly found voltage/current levels
- Test GPS data acquisition, determine when to use the Nichrome blade (multiple ground tests, tethered balloon tests, full-flight test)
- Solder permanent connections
- Design case for system and 3D print (in Autodesk Fusion 360)
- Design/manufacture custom circuit board (in Eagle PCB software)

Thank you

Questions or comments?

