LEG BLOOD FLOW RESTRICTION DURING ROWING EXERCISE AS A COUNTERMEASURE FOR MICROGRAVITY INDUCED DECONDITIONING

SEAN J. MAHONEY

MUSCLE, METABOLISM, AND ERGOGENICS LABORATORY

NORTH DAKOTA STATE UNIVERSITY

THE PROBLEM

MICROGRAVITY EXPOSURE: LONG-TERM SPACEFLIGHT LEADS TO DECONDITIONING.

- ORTHOSTATIC INTOLERANCE UPON RE-ENTRY
- 20% of muscle mass is lost during first four months in space (moore et al., 1985)
- MAXIMAL OXYGEN UPTAKE (VO₂PEAK) DECREASES ~17% (PERHONEN ET AL., 2001)

EMERGENCY EGRESS TASKS MAY REQUIRE WORK INTENSITIES AT 85% OF MAX HEART RATE. EVEN A SMALL DECREASE IN VO₂PEAK (E.G. 10%) CAN GREATLY IMPACT ABILITY TO COMPLETE THESE TASKS (BISHOP ET AL., 1999).

CURRENT COUNTERMEASURES

Advanced Resistance Exercise Device. Cycle Ergometer with Vibration Isolation and Stabilization System. COMBINED OPERATIONAL LOAD BEARING EXTERNAL TREADMILL.

https://www.nasa.gov/mission_pages/station/research/experime nts/1001.html

https://www.nasa.gov/mission_pages/station/multimedia/exp20_work.html

https://www.nasa.gov/mission_pages/station/multimedia/gallery/iss032e01170 1.html

CURRENT COUNTERMEASURES

- PREVIOUS MISSIONS USED PRESSURIZED CUFFS TO PROMOTE BLOOD FLOW TO LEGS (HAWKEY, 2003).
 - LOWER BODY NEGATIVE PRESSURE (LBNP) DEVICES.
- DEVICES ARE LARGE AND RESTRICTED ASTRONAUT MOVEMENT.

WHAT CAN BE DONE?

BLOOD FLOW RESTRICTION & ROWING EXERCISE

- EXERCISE INTERVENTION ORIGINATING IN JAPAN.
 - CLINICAL, ELITE-ATHLETE, ELDERLY.
 - RUMORED TO BE ON THE ISS.
- FLYWHEEL DEVICES, CONCURRENT TRAINING.

THE FIVE W'S

- WHO: 20 HEALTHY, TRAINED PARTICIPANTS (22.1 ± 1.71 YEARS)
- WHAT: LEG BLOOD FLOW RESTRICTION DURING ROWING EXERCISE
 - HEART RATE, BLOOD PRESSURE, WHOLE BLOOD LACTATE, MUSCLE ACTIVITY, RATE OF PERCEIVED EXERTION
- WHEN: TWO EXERCISE SESSIONS: VO2PEAK & CON/BFR
- WHERE: HUMAN PERFORMANCE LAB NDSU
- WHY: TO ESTABLISH ACUTE PHYSIOLOGICAL RESPONSES

VO2PEAK TESTING

RESULTS

- INCREASED CARDIOVASCULAR RESPONSES.
 - HR (120.5 ± 5.53 ∨s. 128.9 ± 9.86)
 - NO CHANGE IN BLOOD PRESSURE
- INCREASE IN PERCEIVED EXERTION.
 RPE (9.8 ± 1.85 vs. 11.8 ± 1.88)
- NO CHANGE IN RESISTANCE EXERCISE RESPONSES.
 - LACTATE, MUSCLE ACTIVITY

Figure Note: Peak HR taken pre-, during, and post-exercise. * denotes significance at p < 0.05

DISCUSSION

- HEART RATE RESPONSE WAS LOWER DURING ROWING BFR THAN PREVIOUSLY REPORTED (RENZI ET AL., 2010).
 - (~7% vs. ~20%)

 PREVIOUS RESEARCH HAS SHOWN THAT INCREASED MUSCLE ACTIVITY IS ASSOCIATED WITH INCREASED LACTATE ACCUMULATION DURING HYPOXIA (TAKARADA ET AL., 2000).

Possible exercise intensity and cuff pressure were not high enough

• LACTATE CAN ALSO BE USED AS A FUEL SOURCE (BROOKS, 1998).

 RESPONSES FROM BFR EXERCISE ARE STILL LOWER THAN TRADITIONAL HIGH-INTENSITY EXERCISE (LOENNEKE ET AL. 2011).

CONCLUSION

- EXERCISE INTENSITY (30%) AND/OR CUFF INFLATION PRESSURE (150-160 MMHG) WERE NOT SUFFICIENT TO SIMULTANEOUSLY ELICIT CARDIOVASCULAR AND RESISTANCE TRAINING RESPONSES.
- FUTURE RESEARCH SHOULD ESTABLISH NORMS.
- LEG BFR DURING ROWING COULD PROVE TO BE A SUPPLEMENTAL COUNTERMEASURE DURING LONG DURATION SPACEFLIGHT.

REFERENCES

- BISHOP, P. A., LEE, S. M., CONZA, N. E., CLAPP, L. L., MOORE, A. D., JR., WILLIAMS, W. J., ... GREENISEN, M. C. (1999).
 CARBON DIOXIDE ACCUMULATION, WALKING PERFORMANCE, AND METABOLIC COST IN THE NASA LAUNCH AND ENTRY SUIT. AVIAT SPACE ENVIRON MED, 70(7), 656-665.
- BROOKS, G. A. (1998). MAMMALIAN FUEL UTILIZATION DURING SUSTAINED EXERCISE. COMP BIOCHEM PHYSIOL B BIOCHEM MOL BIOL, 120(1), 89-107.
- HAWKEY, A. (2003). THE IMPORTANCE OF EXERCISING IN SPACE. INTERDISCIPLINARY SCIENCE REVIEWS, 28(2), 130-138.
 DOI:10.1179/030801803225010377
- LOENNEKE, J. P., WILSON, J. M., WILSON, G. J., PUJOL, T. J., & BEMBEN, M. G. (2011). POTENTIAL SAFETY ISSUES WITH BLOOD FLOW RESTRICTION TRAINING. SCAND J MED SCI SPORTS, 21(4), 510-518. DOI:10.1111/J.1600-0838.2010.01290.x
- MOORE, A. D., JR., DOWNS, M. E., LEE, S. M., FEIVESON, A. H., KNUDSEN, P., & PLOUTZ-SNYDER, L. (2014). PEAK EXERCISE OXYGEN UPTAKE DURING AND FOLLOWING LONG-DURATION SPACEFLIGHT. J APPL PHYSIOL (1985), 117(3), 231-238. DOI:10.1152/JAPPLPHYSIOL.01251.2013
- PERHONEN, M. A., FRANCO, F., LANE, L. D., BUCKEY, J. C., BLOMQVIST, C. G., ZERWEKH, J. E., . . . LEVINE, B. D. (2001).
 CARDIAC ATROPHY AFTER BED REST AND SPACEFLIGHT. J APPL PHYSIOL (1985), 91(2), 645-653.
- RENZI, C. P., TANAKA, H., & SUGAWARA, J. (2010). EFFECTS OF LEG BLOOD FLOW RESTRICTION DURING WALKING ON CARDIOVASCULAR FUNCTION. MED SCI SPORTS EXERC, 42(4), 726-732. DOI:10.1249/MSS.0B013e3181BDB454
- TAKARADA, Y., NAKAMURA, Y., ARUGA, S., ONDA, T., MIYAZAKI, S., & ISHII, N. (2000). RAPID INCREASE IN PLASMA GROWTH HORMONE AFTER LOW-INTENSITY RESISTANCE EXERCISE WITH VASCULAR OCCLUSION. JOURNAL OF APPLIED PHYSIOLOGY, 88, 61-65.