

NDSU AIAA

Design-Build-Fly 2021

> Ryan Alstad Derek Heinis Sarah LaVallie Noah Roth

AIAA Design-Build-Fly

- American Institute of Aeronautics and Astronautics Design, Build, Fly competition
- Goal: Design a UAV to successfully complete a set of specified missions
- This year's Competition: April 15-18 in Tucson, AZ

Mission Requirements

Missions	Mission Requirements/Scoring Criteria	
Flight Mission 1: Staging Flight	5 minutes to complete 3 laps with no payload	
Flight Mission 2: Delivery Flight	5 minutes to complete 3 laps with the sensor and simulator shipping containers	
Flight Mission 3: Sensor Flight	10 minutes to deploy sensor and recover it before landing	
Ground Mission	 Demonstrate timely loading and unloading of shipping containers, Demonstrate sensor deployment and recovery Demonstrate all flight controls 	

Sensitivity Analysis

- Each mission scored with its own scoring equation
- Purpose: to evaluate effect of each scoring equation parameter
- Baseline parameters chosen based on initial designs
- Each increased and decreased by 2% up to 50% change
- Greatest percent change in score:
 - Mission 2 Time
 - # of shipping containers

	Scoring Equation		
Flight Mission 1	M1 = 1.0		
Flight Mission 2	M2 = 1 + [N_(#containers/time) / Max_(#containers/time)]		
Flight Mission 3	M3 = 2 + [N_(#laps * sensor length * sensor weight) / Max_(#laps * sensor length * sensor weight)]		
Ground Mission	GM = [Min_time / N_time]		
Total Score	M1 + M2 + M3 + GM + Report Score		

Concept Generation: UAV

Concept Generation: Shipping Container

Concept Generation: Deployment Mechanism

Final Concepts

Design: Wing

Clark Y Airfoil

Wing span: 5 feet Cord:9.6 inches

Half the wing

Design: Fuselage

- Length: 5 feet
- 4 sections: Nose, cargo bay, bomb-bay, tail

Design: Tail

- Conventional tail
- Symmetrical airfoil (NACA0012)
- Calculations used to determine dimensions
- Horizontal and vertical stabilizers interlock with last two ribs of fuselage
- 0.125-inch-thick ribs
- 4mm carbon fiber rods used at the control surface hinges

	Horizontal Stabilizer	Vertical Stabilizer	
Span (in)	20.875	7.5	

Design: Shipping Container

- Towable
- Holds the "sensor"

Trinket MO microcontroller

Manufacturing

- Built with balsa cut with a laser cutter
- Glued with super glue
- Covered with Monokote

Electronics

- Rimfire .32 electric motor
- 13x8 inch propeller
- 90 Amp ESC
- 3 and 4s LiPo batteries
- 8 channel Receiver
- 9 gram servos

•	Tested	electroni	cs with	ground	tests
---	--------	-----------	---------	--------	-------

Testing

- Then brought it to a RC park to fly, got suggestions from the knowledgeable pilots
- Added a larger rudder than what we designed. Used a 4s battery for extra power.

Acknowledgments

- We'd like to thank the NDSU Mechanical engineering department for the opportunity to do this project
- NDSGC for their funding and support
- Our mentors Dr Suzen and Dr Zhang
- NDSU's AIAA Club

Questions?