Supernovae
Distributions and
Their
Relationships to
Classes of Stars

Sydney Menne Faculty Mentor Dr. Tim Young Summer 2020 NDSGC Student Research Fellowship

Outline

Stellar Types and Classifications

What is a Supernova?

How does a Supernova Happen?

Project Goals

Research Methods

Results

Significance

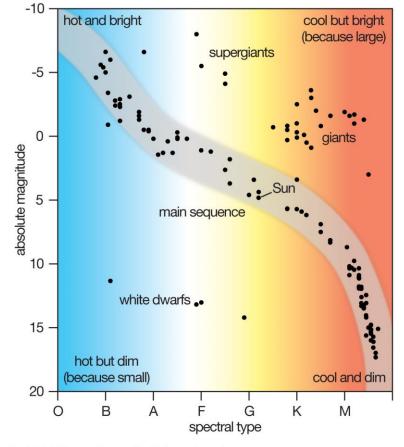
Academic and Career Goals

Stellar Types and Classifications

Spectral Types: (O, B, A, F, G, K, M)

Surface temperature

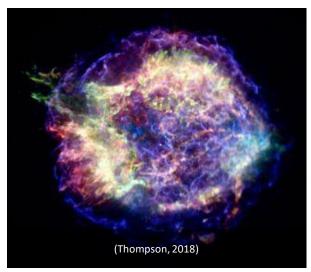
25,000 K

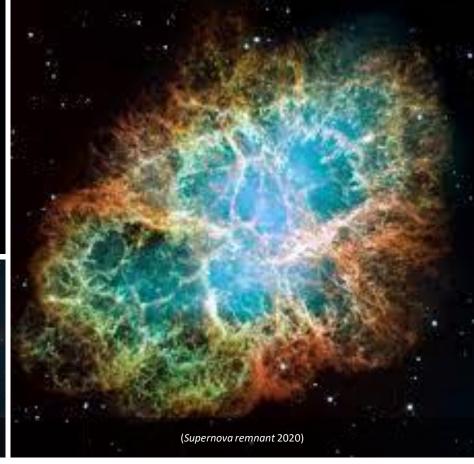

O
B
A
F
G
K
M

this correlates with the color of the star

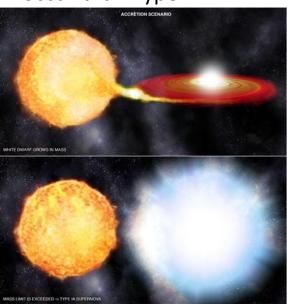
(Classification of stars: Spectral analysis and the H-R diagram 2018)

Luminosity Classes: Supergiants (I), Bright Giants (II), Giants (III), Subgiants (IV), and Main Sequence (V), White Dwarf (VII)


Hertzsprung-Russell diagram

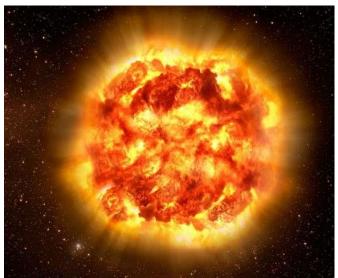

© 2012 Encyclopædia Britannica, Inc.

(Stellar classification 2012)



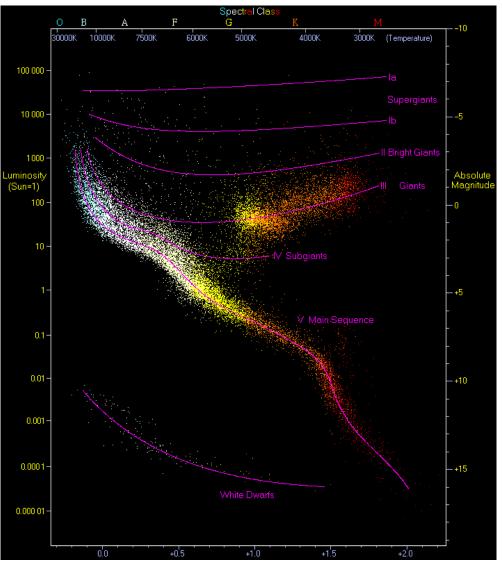
How Do Supernovae Happen?

Type la Supernovae (Binary Systems)


- White Dwarf (luminosity class VII)
 - < 8 SM
- Typically brighter than Type II
- Has to form white dwarf and nearby red supergiant, then supernova; takes longer to occur than Type II

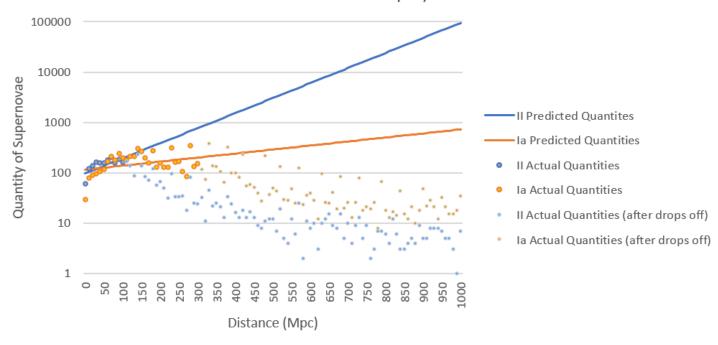
(Institute of Astrophysics Andalusia, 2014)

Type II Supernovae (Single Stars)

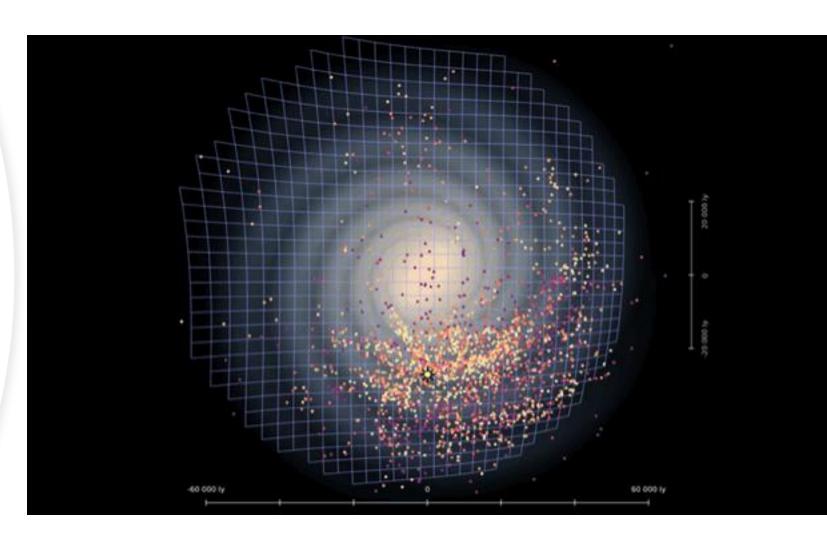

- Supergiant or Bright Giant stars (luminosity class I and II)
 - 8 40 SM
- Formed when a giant star can no longer do nuclear fusion
- Can have different peak luminosities (depending on the star)

(Cain, 2016)

 Classify nearby stars and identify progenitor stars (pre-supernovae stars). How many progenitor stars are around us?


- Classify nearby stars and identify progenitor stars (pre-supernovae stars). How many progenitor stars are around us?
- Identify correlations between luminosity classes of stars and types of supernovae

(Powell, 2007)


- Classify nearby stars and identify progenitor stars (pre-supernovae stars). How many progenitor stars are around us?
- Identify correlations between luminosity classes of stars and types of supernovae
- Identify selection effects observed in stellar and supernovae data

Predicted II and Ia Supernovae Quantities (based on nonbaised small distance sample)

(Menne, 2020)

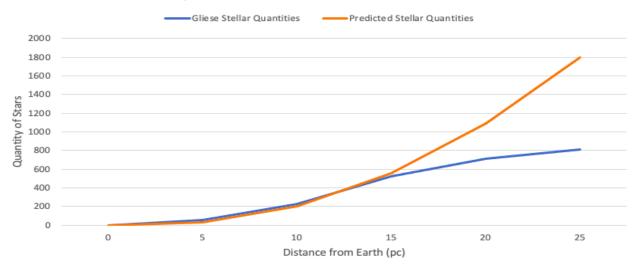
- Classify nearby stars and identify progenitor stars (pre-supernovae stars). How many progenitor stars are around us?
- Identify correlations between luminosity classes of stars and types of supernovae
- Identify selection effects observed in stellar and supernovae data
- Gain a better, more complete understanding of our stellar neighborhood

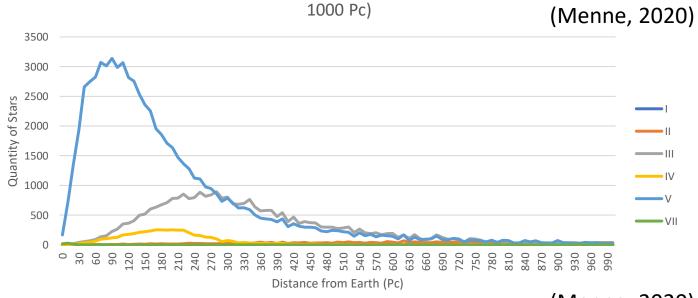
Research Methods

- CNS3 Gliese Catalog of Nearby Stars (NASA) (Gliese & Jahreiss, 1995)
 - 25 parsecs (81.5 LY)
 - 3,803 stars
- Tycho-2 Catalogue (Hipparcos satellite) (Høg et al., 2000)
 - 117,995 stars

Research Methods

- The Open Supernova Catalog (Guillochon, Parrent, Kelley, & Margutti, 2017)
 - 66,682 supernovae
 - Beyond Milky Way Galaxy

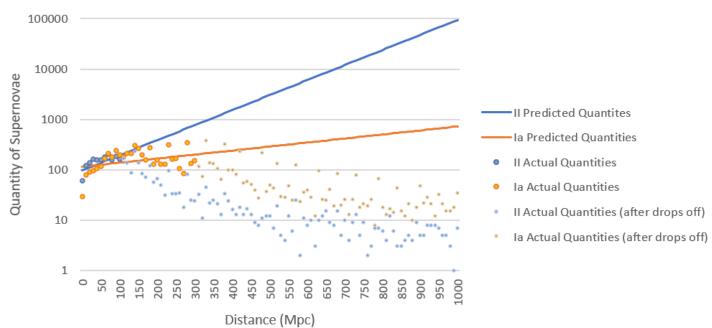

Went out in radial distances (spherical shells) from the Sun


Results

- Luminosity selection effects
 - CNS3 Catalog
 - Tycho-2 Catalog
 Malmquist Bias

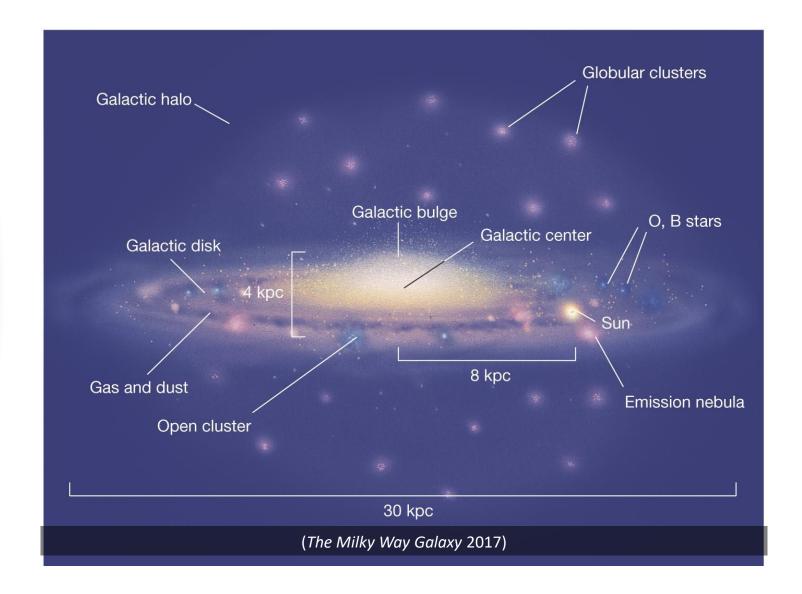
Predicted Stellar Quantities with a Constant Stellar Density of 0.055 stars/pc^3 and Gliese Observed Stellar Quantities

Quantity of Class of Stars as a Function of Distance (Hipparcos Catalog,



(Menne, 2020)

Results


- Luminosity selection effects
 - Supernova quantities (Open Supernova Catalog)

Predicted II and Ia Supernovae Quantities (based on nonbaised small distance sample)

Results

- Progenitor stars
 - 7,050 within 24 kpc
 - 6,849 within 10 kpc
- Neutrino detection

References

Buczkowski, A. (2019, September 17). Check out what this new amazing 3d map of the milky way tells us about our galaxy. Retrieved April 11, 2021, from https://geoawesomeness.com/check-out-what-this-new-amazing-3d-map-of-the-milky-way-tells-us-about-our-galaxy/

Cain, F. (2016, March 15). What are the different kinds of supernovae? Retrieved from https://phys.org/news/2016-03-kinds-supernovae.html

Classification of stars: Spectral analysis and the H-R diagram. (2018, August 09). Retrieved April 08, 2021, from https://www.youtube.com/watch?v=Y5VU3Mp6abl

Gliese, W., & Jahreiss, H. (1995, November). VizieR Online Data Catalog: Nearby Stars, Preliminary 3rd Version (Gliese 1991). Retrieved from https://ui.adsabs.harvard.edu/abs/1995yCat.5070....0G/abstract

Guillochon, J., Parrent, J., Kelley, L. Z., & Margutti, R. (2017). An Open Catalog for Supernova Data. *The Astrophysical Journal*, 835(1). doi:10.3847/1538-4357/835/1/64

Høg, E., Fabricius, C., Makarov, V., Urban, S., Corbin, T., Wycoff, G., . . . Wicenec, A. (2000). The Tycho-2 Catalogue of the 2.5 million brightest stars*. *Astronomy and Astrophysics*. Retrieved from http://articles.adsabs.harvard.edu/pdf/2000A%26A...355L..27H

Institute of Astrophysics Andalusia. (2014, August 20). Type Ia supernovae stem from the explosion of white dwarfs coupled with twin stars. Retrieved from https://phys.org/news/2014-08-ia-supernovae-stem-explosion-white.html

The Milky Way Galaxy. (2017, April 5). Retrieved April 10, 2021, from https://pages.uoregon.edu/jimbrau/astr123/Notes/Chapter23.html

Powell, R. (2007, March 3). The Hertzsprung Russell Diagram. Retrieved from http://www.atlasoftheuniverse.com/hr.html

Stellar classification. (2012). Retrieved April 08, 2021, from https://www.britannica.com/science/stellar-classification

Supernova ejects material asymmetrically. (2017, August 29). Retrieved April 08, 2021, from https://physicsworld.com/a/supernova-ejects-material-asymmetrically/

Supernova remnant. (2020, November 29). Retrieved April 08, 2021, from https://en.wikipedia.org/wiki/Supernova remnant

Thompson, A. (2018, February 09). What is a supernova? Retrieved April 08, 2021, from https://www.space.com/6638-supernova.html