NDSU Formula SAE

NDSU NORTH DAKOTA STATE UNIVERSITY

> Ethan Langerud, Mark Cameron, Andrew Kulzer, Will Larson, Darius Kleine

What is FSAE?

- Hosted by Society of Automotive Engineers (SAE)
- 13 International Competitions
 - 2 USA (Michigan & Nebraska)
- Static Events
 - Cost, Design, Presentation
- Dynamic Events
 - Skid Pad, Acceleration,
 Autocross, Endurance, Efficiency

Team Background

Student Run Organization

NDSU MECHANICAL ENGINEERING

- 9 current members, all majors welcome
- Mostly Engineering, eligible for Senior Design credit
- Last Competed in 2017
 - Team has usually operated on 2-year competition cycle
 - Covid-19 caused the project to sit dormant since 2020
 - Currently trying to rebuild the club

Project Background

- 4 Previous Senior Design Groups
- Our Team Focus
 - Bodywork
 - Cockpit

NDSU MECHANICAL ENGINEERING

- Frame & Suspension
- Testing
- Goal: To build a simple and robust car that future teams can build off

Bodywork

Nose Cone & Side Panels

- Nose cone designed and fabricated by previous team.
 - Adding body filler to get a smooth finished surface
- Fiber Glass vs. Carbon Fiber
 - Already have fiber glass material
 - Cheaper (\$500 savings)
 - Will be painted
- Mounting
 - Adjustable
 - Easy to remove and install (no tools required)

Bodywork

Skid Plates

- 6061 Aluminum vs. Composite
 - Simple to fabricate
- Mounting
 - Removable
 - Simple to install
 - Minimize loss of ground clearance

Cockpit

Driver Head Restraint

- Protect driver's head from violent motion
- SAE loading requirements

Driver Seat

- Carbon fiber composite
- Lightweight and strong

Head Restraint FEA

Cockpit

Driver Leg Protection

- Protect Driver's Legs
- Solid Material
- Easily Removable

Framework

Rear Frame

- Optimized for new suspension
- Revised engine and suspension mounts
- Simplify design from previous car

Revised

Suspension

Final Design

- Cantilever design
- Reuses bell cranks, spindles, Heim joints, and pushrods

Testing

- Optimization
- Fuel to Air Ratio
- Power to Fuel Efficiency
- **Tuning ECU**
 - AEM EMS-4
 - Smoother Running
- Dynamometer
- DYNOmite
 - Water Brake Dyno.
 - Uses RPM and Torque for HP

NASA Relevance

- Strict SAE Guidelines and Constraints
- Modern Engineering Methods and Standards
- Project and Budget Management
- Complex Engineering Problems

Full Car

-Ö

ISO View

Acknowledgements

Thank you!

PERFORMANCE ELECTRONICS

