Hyperspectral remote sensing (imaging Spectroscopy) of agriculture and vegetation:

knowledge gains and knowledge gaps after 40 years of research
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Importance of Hyperspectral Sensors in Study of Vegetation

More specifically.............. hyperspectral Remote Sensing, originally
used for detecting and mapping minerals, is increasingly needed for
to characterize, model, classify, and map agricultural crops and
natural vegetation, specifically in study of:

(a)Species composition (e.g., chromolenea odorata vs. imperata cylindrica);
(b)Vegetation or crop type (e.g., soybeans vs. corn);

(c)Biophysical properties (e.g., LAI, biomass, yield, density);
(d)Biochemical properties (e.g, Anthrocyanins, Carotenoids, Chlorophyll);
(e)Disease and stress (e.g., insect infestation, drought),

(f)Nutrients (e.g., Nitrogen),

(g)Moisture (e.g., leaf moisture),

(h)Light use efficiency,

(i)Net primary productivity and so on.
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Spectral Wavelengths and their Importance in the Study of Vegetation Biophysical and Biochemical properties
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Typical Hyperspectral Signatures of Certain Land Components
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Fraction images of a pasture property in the Amazon derived from EO-1 Hyperion imagery. Four
endmembers: (a) nonphotosynthetic vegetation (NPV); (b) green vegetation (GV); (c) Soil; and (d) Shade.

See chapter 9, Numata et al.
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Definition of Hyperspectral Data

A. consists of hundreds or thousands of narrow-wavebands (as
narrow as 1; but generally less than 5 nm) along the
electromagnetic spectrum;

B. itisimportant to have narrowbands that are contiguous for strict
definition of hyperspectral data; and not so much the number of
bands alone (Qi et al. in Chapter 3, Goetz and Shippert).

............. Hyperspectral Data is fast emerging to provide practical
solutions in characterizing, quantifying, modeling, and mapping
natural vegetation and agricultural crops.
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Hyperspectral Remote Sensing (Imaging Spectroscopy)
Truck-mounted Hyperspectral sensors

The advantage of airborne, ground-based, and truck-mounted sensors are that they
enable relatively cloud free acquisitions that can be acquired on demand anywhere; over
the years they have also allowed careful study of spectrain controlled environments to
advance the genre. /
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Spaceborne Hyperspectral Imaging Sensors: Some Characteristics

There are some twenty spaceborne hyperspectral
sensors

The advantages of spaceborne systems are their
capability to acquire data: (a) continuously, (b)
consistently, and (c) over the entire globe.

The 4 near future hyperspectral spaceborne missions:
1. PRISMA (Italy’s ASI’s),

2. EnMAP (Germany’s DLR’s), and

3. HISUI (Japanese JAXA);

4. HysplIRI (USA’s NASA).

will all provide 30 m spatial resolution hyperspectral
images with a 30 km swath width, which may enable a
provision of high temporal resolution, multi-angular
hyperspectral observations over the same targets for
the hyperspectral BRDF characterization of surface.

The multi-angular hyperspectral observation capability
may be one of next important steps in the field of
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Comparison of Hyperspectral Data with Data from Other Advanced Sensors

Hyperspectral Sensors for Land and Atmospheric Studies

Table 1. Characteristics of spaceborne hyperspectral sensors (either in orbit or planned for launch) for Ocean, atmosphere, land, and water
applications compared with ASD spectroradiometer® [modified and adopted from Thenkabail et al., 2011, 2014, and Qi et al., 2011].

Sensor, Satellite®  Spatial

I Coastal Hyperspectral Spaceborne Imagers

3. HICO, ISS 90 128 42
USA

1. Atmosphere\Ozone Hyperspectral Spaceborne Imagers

3. OMI, Aura 13000x12000 740 145
USA
3. SCIAMACHY, ENVISAT 30000 x60000 ~2000 960
ESA

1. Land and Water Hyperspectral Spaceborne Imagers

1. Hyperion, EO-1 30 220 (196b) 7.5

USA

2. CHRIS, PROBA 25 19 175
ESA

3. HyspIRI VSWIR 60 210 145
USA

4. HyspIRI TIR 60 8 145
USA

Spectral Swath
(meters) (#) (km)

band range

(um)

353-1080

270-500

212-2384

196 effective
Calibrated bands

band widths

(um)

5.7

0.45-1

0.2-1.5

10 nm wide
(approx.) for all

VNIR (band 8 to 57 196 bands

427.55 t0 925.85 nm

SWIR (band 79 to 224)

932.72 t0 2395.53 nm

200-1050

210 bands in
380-2500 nm

7 bands in
7500-12000 nm
and 1 band in

1.25-11

10 nm wide
(approx.) for all
210 bands

7 bands in
7500-12000 nm

Irradiance

(W m=2srt um)

See data in
Neckel and Labs
(1984). Plot it

See data in
Neckel and Labs
(1984). Plot it

See data in
Neckel and Labs
(1984). Plot it

See data in
Neckel and Labs
(1984). Plot it
and obtain
values for
Hyperion

bands

same as above

See data in
Neckel and Labs
(1984). Plot it

See data in
Neckel and Labs
(1984). Plot it

Data Points

Launch

(# per hectares) (Date)

0.81

1/16900

1/180000

16

2.77

2.77

2009-present

2004-present

2002-present

2000-present

2001-present

2020+

2020+



Comparison of Hyperspectral Data with Data from Other Advanced Sensors

Hyperspectral Sensors for Land and Atmospheric Studies

3000-5000 nm
(3980 nm center)

5. EnMAP 30 92 30 420-1030 5-10 same as above 111 2015+
Germany 108 950-2450 10-20

6. PRISMA 30 250 30 400-2500 <10 same as above 111 2014+
Italy

l. Land and Water Hand-held spectroradiometer

7. ASD spectroradiometer 1134 cm?® @ 1.2 m 2100 bands N\A 2100 effective 1 nm wide See data in 88183 last
Nadir view 1 nm width bands (approx.) in Neckel and Labs 30+ years
18 degree between 400-2500nm (1984). Plot it
Field of view 400-2500 nm and obtain
values for
Hyperion
bands
Note:

a = information for the table modified and adopted from Thenkabail et al., 2011, Thenkabail et al., 2014, and Qi et al., 2014.

b = Of the 242 bands, 196 are unique and calibrated. These are: (A) Band 8 (427.55 nm) to band 57 (925.85 nm) that are acquired by visible and near-infrared (VNIR) sensor; and (B) Band 79 (932.72 nm) to band 224 (2395.53 nm) that are
acquired by short wave infrared (SWIR) sensor

¢ = HICO = Hyperspectral Imager for the Coastal Ocean onboard International Space Station. OMI = Ozone Monitoring Instrument onboard AURA of NASA; SCIAMACHY (Scanning Imaging Absorption Spectrometer for
Atmospheric CHartographY) of ESA; Hyperion EO-1= hyperspectral sensor onboard EO-1= Earth observing 1; CHRIS PROBA = Compact High Resolution Imaging Spectrometer Project for On Board
Autonomy satellite of ESA; HyspIR1 VSWIR = Hyperspectral Infrared Imager Visible to Short Wavelength InfraRed of NASA; HyspIRI TIR = Hyperspectral Infrared Imager thermal infrared of NASA; Environmental Mapping and
Analysis Program of Germany; PRISMA =PRecursore IperSpettrale della Missione Applicativa of Italy.



Earth and Planetary Hyperspectral Remote Sensing Instruments

Hyperspectral Instrument Spectral # of Spectral Spatial Operational
Ranae (nm) Channels Bandpass Resolution Dates
Earth
AVIRIS! 380 - 2500 224 10 nm 4-20m 1989 - present
ProSpecTIR-VS? 400 - 2450 256 2.3-20 nm 1-10m ~2000 - present
Airborne HyMap® 400 - 2500 128 15 nm 2-10m ~1997 - present
cAsT* 400 - 1000 288 2-12nm 0.5-10m ~1990 - present
SFSI® 1230 - 2380 230 10 nm 05-10m 1990 - present
Spaceborne EO-1 Hyperion® 400 - 2500 220 10 nm 30m 2001 - present

Mercury MESSENGER MASCS’ 220 - 1450 768 0.2-0.5nm 1 - 650 km 2004 - present
Moon Chandrayaan-1 Moon Mineralogy Mapper® 400 - 2900 260 10 nm 70-140 m 2008 - 2009

Mars Mars Express OMEGA® 350 - 5100 352 7-20 nm 300 m -4.8km 2003 - present
Mars Reconnaissance Orbiter CRISM™ 362 - 3920 545 6.55 nm 157 m-200m 2005 - present

Jupiter Galileo NIMS™ 700 - 5200 1-408 125&25nm 50 - 500 km 1989 - 2003

Saturn Cassini VIMS® 300 - 5100 7 & 14 nm 10 - 20 km 1997 - present

1 - Airborne Visible Infrared Imaging Spectrometer (http://aviris.jpl.nasa.gov)

2 - Spectral Technology and Innovative Research Corporation Hyperspectral Imaging Spectrometer
(http://www.spectir.com/assets/Images/Capabilities/ProspecTIR%20specs. pdf)

3 - HyVista Corporation Hyperspectral Mapper, developed by Integrated Spectronics
(http://www.hyvista.com/main.html and http://www.intspec.com)

4 - Compact Airborne Spectrographic Imager (http://www.geomatics-group.co.uk/GeoCMS/Products/CASI.aspx)

5 - SWIR Full Spectrum Imager (http://www.borstad.com/sfsi.html)

6 - Hyperion (http://eo1.gsfc.nasa.gov/Technology/Hyperion.html)

7 - Mercury Atmospheric and Surface Composition Spectrometer (http://www.messenger-education.org/instruments/mascs.htm)

8 - M* (http://moonmineralogymapper.jpl.nasa.gov/INSTRUMENT/)

9 - Observatoire pour la Minéralogie, 'Eau, les Glaces et I'Activité (http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=34826&fbodylongid=1598)

10 - Compact Reconnaissance Imaging Spectrometer for Mars (http://crism.jhuapl.edu/)

11 - Near-Infrared Mapping Spectrometer (http://www2.jpl.nasa.gov/galileo/instruments/nims.html)

12 - Visual and Infrared Mapping Spectrometer (http://wwwvims.Ipl.arizona.edu/)

See chapter 27, Vaughan et al.
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Comparison of Hyperspectral Data with Data from Other Advanced Sensors
Hyperspectral, Hyperspatial, and Advanced Multi-spectral Data

Satellite/Sensor spatial resolution spectral bands
or pixels (meters) (#)

Earth Observing-1

Hyperion 30 196 (400-2500 nm)

ALI 10 m (P), 30 m (M) 1,9

IKONOS 2 1m (P),4m (M) 4

Spacelmaging

QUICKBIRD 0.61 m (P), 2.44 m (M) 4

Digital Globe

Terra: Earth Observing System (EOS)

ASTER 15m,30m, 90 m 4,6,5
(VNIR,SWIR,TIR)

MODIS 250-1000 m 36

Landsat-7 ETM+ 15m (P), 30 m (M) 7

Landsat-4,5 TM 30 m (M) 7

SPOT-1,2,3, 4,5 HRV 2.5m.5m, 10 m (P/M), 20 m (M) 4

1600,400,100,25

IRS-1C LISS 5m (P), 23.5 m (M)
IRS-1D LISS 5m (P), 23.5 m (M)

science for a changing world

U.S. Geological Survey
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data points
per hectare

11.1
100, 11.1

10000, 625

16393, 4098

44.4,11.1,1.26
0.16,0.01
44.411.1

111

400, 18.1
400, 18.1



Comparison of Hyperspectral Data with Data from Other Advanced Sensors
Hyperspectral, Hyperspg and Advanced Multi-spectral Data

Y. sec. Forest

Y. sec. Forest

50 50
o) ~
c — - e _ .
S 40 A P. forest § 40 - P. forest
b fug
g g
=30 A Slash&Burn — 30 1 Slash&Burn
3 8
% 20 % 20 - -
3] — Raphia palm g \ — Raphia palm
% 10 1 B 107 <
o4 —
= 0 — Bamboo 0 ‘ ‘ | | Bamboo
‘ ‘ | | | 400 900 1400 1900 2400 [N,
400 500 600 700 800 900  10(JEESI—, Wavelength (nm) :

Wavelength (nm)
IKONOS: Feb. 5, 2002 (hyper-spatial)

U.S. Geological Survey
U.S. Department of Interior

Y. sec. Forest Y. sec. Forest
= 50
§ 40 - — P. forest — P. forest
3
£ 30 4 Slash&Burn Slash&Burn
(<)
§ 207 — Raphia palm i
=} — Raphia palm
= 10 1 -
& . -7 | ‘ ‘ — Bamboo — Bamboo
400 900 1400 1900 240( -
— P. Africana .
Wavelength (nm) - A o S P. Africana
) . Wavelength (nm)
ALI: Feb. 5, 2002 (multi-spectral) Hyperlon March 21 2002 (hyper spectral)
: ,'5., “-‘ﬁ;' : 215 A
2 B =




science for a changing world
U.S. Geological Survey
U.S. Department of Interior




Hyperspectral Remote Sensing (Imaging Spectroscopy)
~64,000 Hyperspectral Hyperion Images of the World (2001-2013)

}_e ge nd‘”,
' AVHRR NDVI-MVC.
' / High :1

0
B EO-1 Hyperion

U

science for a changing world

U.S. Geological Survey
U.S. Department of Interior



http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://eo1.usgs.gov/
http://eo1.usgs.gov/

Hyperspectral Remote Sensing of Vegetation
Mega file Data Cube (MFDC) of Hyperion Sensor onboard EO-1

Hyperion: VNIR reflectance

(Mean spectral plots of landuse/landcover types)

w
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Hyperion has 220
bands in 400-2500 nm

Note: Currently NASA is planning a
next Spaceborne Hyperspectral
mission called: HysplIRI

FCC (RGB): 1245, 680, 547
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Hyperion Narrow-Band Data from EO-1 Vs. ETM+ Broad-band Data

Hyperspectral Data Provides Numerous Ways of Looking at Data

=== 2 - nigeria-etm-ref-18952-090300-rectified ===

ETM+:4,3,2 Hyperion:843, 680, Hyperion: 680, 547,

=== 4 : hyperion-022601-305-962-680 ==~ [_[O[x] === 4 : hyperiol 2601-1245-680-547 === === 4 : hyperion-022601-1642-905-680 =~
N ) ol 4

547 680
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Hyperspectral Data in Study of Complex Vegetation
e.g., Hyperion EO-1 Data for Biophysical Characteristics of African rainforests
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Hyperion Data from EO-1 (e.g., in Rainforests of Cameroon)
Hyperspectral Data Cube Providing Near-continuous data of 100’s of Wavebands
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Hyperion Data from EO-1 (e.g., in Rainforests of Cameroon)
Hyperspectral Data Cube Providing Near-continuous data of 100’s of Wavebands

—Mixed crops (122)

——Cotton 1: late vegetative (176)

——Rice 1: pod formation (155)

—Corn: tasselling (112)

——cassava (56)

——Wheat: late vegetative (134)
Cropland Fallows (47)

Reflectance (%)

428 529 631 733 834 933 1034 1134 1235 1336 1437 1538 1639 1740 1841 1942 2042 2143 2244 2345

Wavelength (nm)
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Hyperspectral Data Gathered for the Following Rainforest Vegetation
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Hyperspectral Data of Two Dominant Weeds

Mean reflectance of Chromolaena odorata and Imperata cylindrica
Nigeria-Benin 2000

== Chromolaena odorata (n=67) Imperata cylindrica (n=45)
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Hyperspectral Data of Vegetation Species and Agricultural Crops
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Hyperspectral (imaging spectroscopy) Data on Agricultural Crops

Biophysical and Biochemical Properties

Biophysical

Biochemical

Note: see chapter 13, Alchanatis and Cohen

U.S. Geological Survey
U.S. Department of Interior

Property (BB-PAC)

Biomass [kg m"|

Leaf Area Index/ Crop
cover [No units / %]

Crop height [m]

Canopy volume [m’]
Yield [kg m™]

Stomata conductance
[mmol sec™]

Leaf/Stem water potential
[MPa]

Flowering intensity
[Relative units]

Nitrogen content [%N]

Chlorophyll content
[ug em?]

Salinity [mg 1]

Leaf water content [%]

Leaf macro-elements like
phosphorus (P) and
potassium (K) [mg Kg”]

wheat, rice, com

wheat, soybean, corn,

cotton

cotton, wheat

orchards, wheat
wheat, corn, cotton
vineyards

cotton, orchards,
vineyards

orchards

corn, wheat, potatoes

corn, wheat, cotton

cotton

wheat, potato

olives

Agro-technical
management
arameter

fertilization
fertilization

irrigation, application
of growth regulators
irrigation, fertilization

irrigation

irrigation

owth regulators,
chanical thinning

fertilization
fertilization

water quality
management, not used
in practice

irrigation

fertilization, not used
in practice




Hyperspectral Data in Study of Complex Vegetation
e.g., Hyperion EO-1 Data for Biochemical Characteristics of African rainforests

Biochemistry (e.g., plant pigments, water, and structural carbohydrates):
Leaf reflectance in the visible spectrum is dominated by absorption features
created by plant pigments, such as:
chlorophyll a (chl-a): absorps in 410-430 nm and 600-690 nm;
chlorophyll b (chl-b): absorps in 450-470 nm;
carotenoids (e.g., B-carotene and lutein): peak absorption in wavebands
<500 nm; and
anthocyanins.
Lignin, cellulose, protein, Nitrogen: relatively low reflectance and
strong absorption in SWIR bands by water that masks other absorption

features

science for a changing world
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Hyperspectral Data on Tropical Forests
Factors Influencing Spectral Variation over Tropical Forests

2. Structure or biophysical (e.g., leaf thickness and air spaces): of leaves, and
the scaling of these spectral properties due to volumetric scattering of photons
In the canopy;

3. Nonphotosynthetic tissues (e.g., bark, flowers, and seeds); and
4. Other photosynthetic canopy organisms (e.g., vines, epiphytes, and

epiphylls) can mix in the photon signal and vary depending on a complex
interplay of species, structure, phenology, and site differences,

Note: see chapter 18, Clark et al.
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Hyperspectral Remote Sensing of Vegetation

Study of Biophysical Characteristics

Biomass: wet and dry; (kg\m?);

Leaf area index (LAI), Green LAI; (m?m?)

Plant height; (mm)

Vegetation fraction; (%)

Fraction of PAR absorbed by photosynthetically
active vegetation (fAPAR); (MJ\m?)

Total crop chlorophyll content; (g\m?) and
Gross primary production. (g C\m?\yr)

Sl D

T

Note: see chapter 1, Thenkabail et al.; chapter 6, Gltelson‘etﬂal
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overcoming data redundancy through Data Mining
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Hyperspectral Data (Imaging Spectroscopy data)
Not a Panacea!

For example, hyperspectral systems collect large
volumes of data in a short time.
" data storage volume;
" data storage rate;
" downlink or transmission bandwidth;
" computing bottle neck in data analysis; and

" new algorithms for data utilization (e.g., atmospheric
correction more complicated).

science for a changing world
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Lambda by Lambda R-square Contour Plots: Identifying Least Redundant Bands

R< values between
wavebands (lesser the

RZ value lesser the
redundancy)

0.005-0.01
0.008-0.008
m 0.007-0.008
Hiahlv redundant W 0.006-0.007
ighly redundant:
bands centered at ya W 0.005-0.006
680 nm and 690 nm ® — e ® b . o . o m 0.004-0.005
' : W 0.003-0.004
W 0.002-0.003
m0.001-0.002
N 0-0.001
. Distinctly
-1.';3 BRI H21 TF22 224 B2 1024 1124 1226 1447 1642 1448 17RO H33 2133 3234 7235 = dlfferent
e L T : bands
Significantly Lambda VS. Lam b_da Correlation cee e
different: bands plot for African rainforest 920 nm
centered at 680 Vegetation and 2050

nm and 890 nm



Data Mining Methods and Approaches in Vegetation Studies
Feature selection\extraction and Information Extraction

Feature selection is necessary in any data mining effort. Feature
selection reduces the dimensionality of data by selecting only a
subset of measured features (predictor variables). Feature
selection methods recommendation based on:

(a)iInformation Content (e.g., Selection based on Theoretical
Knowledge, Band Variance, Information Entropy),

(b)Projection-Based methods (e.g., Principal Component Analysis
or PCA, Independent Component Analysis or ICA),

(c)Divergence Measures (e.g., Distance-based measures),

(d)Similarity Measures (e.g., Correlation coefficient, Spectral
Derivative Analysis), and

(e)Other Methods (e.g., wavelet Decomposition Method).

Note: see chapter 4
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Data Mining Methods and Approaches in Vegetation Studies
Principal Component Analysis: Identifying Most useful Bands

Wavebands with Highest Factor Loadings

¥y

Principal component analysis

r crop species

Band centers (nm) with first 20 highest factor loadings

% variability explained

5
Crops PCA1L PCA2 PCA3 PCA4 PCAS PCA PCA PCA PCA PCA cumulat
1 2 4 5 ive
PCAs
1725;1715;1705;1 2002;2342;2322;2 2002;1245;1255;1
575; 635:625:695:615:6 282; 235: 2332:2342:2322:19
1695:1605;1735:1 45: 2312:2312:2272:1 1275:1265;1285:1 82;
585; 605:595:655:585;7 455; 992: 2312:2312:1445:22
1555:1595:1565:1 05: 1380:2012;2332:2 2042:2032:2262:2 92:
Cassava cap. 575:685:665;515:5 022: 062: 2022:1992:2262:86 o0 189 56 26 1.9 927
1625:1655;1545:1 25: 2222:2292:2262;1 2292;1225:2322;1 5:
615; 565;535;555;545;7 465; 982; 875;855;775;885;78
1565:1l685 1b7E: 1 15 1082;2252:1445:2 2072:2232;2012;2 5; 845;795:805
645 132 282
E;rg‘:r';g EMIR Green; Red  MIR: MMIR: FMIIR:EMIR:MMIR:FR: EMIR; MMIR; FMIR
1675;1665; 2032:2052:2042:2 2002;2012;2342:1
1645;1655; 082: 992: 355:365:375:385:3 2342:2002;2012;19
1685;1695:1635:1 2072:2062;2092;2 2022;1982:2332:2 95: 92:
705: 102; 322: 405:415:425:435:1 1982:2332:2022:35
1625:1715:1725:1 1982:2112;1465;2 2032;2072:1255:1 445; 5:
Com 45 122 245: 1245:445:1255:12 375:2052:365:2322; 00 161 78 22 19 949
1735:1605:1745:1 2022:1455:2132;1 2042;1275:1285:1 35; 385:395:405;2042;
595; 992; 265; 1275;1265;1285;1 2062;
1755;1585;1765:1 1475:2142;1485:2 2062;1235:2052;1 225: 11351455  2312;2312:415
575 252 380
Dominati EMIR MIR: MMIR: FMII FNIR; EMIR; UV; Blue; FNIR; UV; Blue; EMIR;

ng bands

MMIR; FMIR

EMIR

MMIR; FMIR
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Hyperspectral Remote Sensing (Imaging Spectroscopy)
~64,000 Hyperspectral Hyperion Images of the World (2001-2013)

~64,000 Hyperion Images of the World from 2000-2013. “Wh

50
http://earthexplorer.usgs.gov/; http://eo1.gsfc.nasa.gov/ A
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Hyperspectral Remote Sensing (Imaging Spectroscopy)

~64,000 Hyperspectral Hyperion Images of the World (2001-2013)

12ICOW 1200w HrOTW HATTW 8000

122°0'0"'W 121°0°0"W 120°0'0"W Corn-notill

Corn-min
6000

Grass/Pasture
Grass/Trees
Hay-windrowed
Soybeans-notill
Soybeans-min

4000

Soybeans-clean
—— Woods

Scaled Reflectance

2000

1 1

1
0 50 100 150 200

Band number

etal, 2013  (b)

Reflectance

- — A
o 40 & 160

121°00"W\ 120°00"W
!

36°0'0"N+4

35°0°0"N+
Thenkabail et al., 2015
—Wetlands (64)
a0 —Barren rocky area (32)

34°0'0"N+ Buit-up (69)
0 40 80 —Forest: young (113)
T T T T T —Forest: Primary (79)

122°0'0"W 121°00"W 120°0'0"W 19°00"W 118°00"W cocoa (33)

bamboo (21)

Reflectance (%)

|V

428 529 631 733 834 933 1034 1134 1235 1336 1437 1538 1639 1740 1841 1942 2042 2143 2244 2345

Wavelength (nm)

R
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Hyperspectral Study of Agricultural Crops

Hyperspectral Data from Various Benchmark Areas of the World for Leading World Crops

30°0'0"W
!

90°0'0"E
1

0| -=Wheat, critical (164)

o 10, = Corn-late vegetative
° <= [(d44)

Reflectance factor

500 1000 1500 2000 2500
Wavelen (nanometers)

Reflectance factor

30°0'0"S

1 Legend
I |rrigated areas
\ | Rainfed areas

0 500 000 1500 2000 2500
Wavelength (nanometers)

Py

Y _'D‘
5,

avelength (nanometers)

e /\)
/

[ | Non-croplands

Crop

T .
30°0'0"W 0°0'0" 30°0'0"E

—_—

{
SN
1
|

“7ig7 = Cotton, flowering

= Barley, late vegetative
(115)

500 100
Wavelength (

N
“E‘l:g.
U

1,300 650 0 1,300
[ e e— )

500 0 15002000 25
Wavelength (nanometers)

Wavelength (nanometers)
k]

World World
Area (ha) % *

Wheat
Maize
Rice
Barley
Soybeans
Pulses
Cotton
Alfalfa

402,800,000 225
227,100,000 127
195,600,000 10.9
158,000,000 8.8
92,700,000 52
79,400,000 4.4
53,400,000 3.0
30,000,000 1.7

science for a changing world Total of major 8 crops (ha)

1,239,000,000 69.1

U.S. Geological Survey Others (ha)
U.S. Department of Interior Total cropland (ha)

553,000,000 30.9
1,792,000,000 100.0

Study areas from
where hyperspectral
data from
spectroradiometer and
Hyperion were
gathered. The irrigated
and rainfed cropland
study areas of eight
major world crops
(Table below) in
distinct
agroecosystems for
which hyperspectral
data from
spectroradiometer and
Hyperion were
collected from four
study areas (see
details in next slide).




Hyperspectral Study of Agricultural Crops

Hyperspectral Data from Various Benchmark Areas of the World for Leading World Crops

Study

areas

(name)

Africa

(sudan savanna,

N. guinea savanna,

S. guinea savanna,
derived savanna,
humid forests)
Syria
(supplemental
irrigated areas)
Uzbekistan
(irrigated areas)

India
(rainfed areas)

Major crops
Studied

(crop types)
corn, soybeans
rice

Barley, corn,
soybeans, wheat,
pulses (chickpea)
wheat, rice, cotton,
alfalfa, corn

barley, soybeans,
pulses (chickpea)

Major crop characteristics
for which data gathered
(crop parameters)

biomass

plant height, plant density,
crop types

biomass, LAI, Yield,
plant height, plant density,
nitrogen, crop types
biomass, Yield,

plant height, plant density,
crop types

biomass

plant height, plant density,

Hyperspectral data number of

(sensor types)
Hyperion
spectroradiometer

spectroradiometer,

Hyperion
spectroradiometer

Hyperion
spectroradiometer

data points

(#)
532

| | croptypes | |
Cross-site hyperspectral spectroradiometer data. Cross-site mean (regardless of which
study site (1-4, Table)) spectral plots of eight leading world crops in various growth stages.
(A) Four crops at different growth stages; (B) same four crops as in A but in different
growth stages; (C) four more crops at early growth stages; and (D) same four crops as C,

U.S. Geological Survey
U.S. Department of Interior



Hyperion Hyperspectral Study of Agricultural Crops

Hyperspectral Data from Various Benchmark Areas of the World for Leading World Crops

40 40 — Rice, late vegetative (38)

— Wheat, early vegetative (56)

35 35

30 - 30

58 o 25 B

20 20

15

Reflectance (%)

15 §

Reflectance (%)

10 10

5 5

0

0
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm) Wavelength (nm)

r -

= Corn, late vegetative (64) = Cotton, late vegetative (52)

2777 ': ; d

N 7 |
d
£ & 1,/

Reflectance (%)
Reflectance (%)

Legend of top band false color composite
hyp_gal_2007_0801-213

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 ¥ 7 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
B Red: 910 nm :

Wavel h
avelength (nm) l:’ Green: 680 nm . Wavelength (nm)

I Blue: 1450 nm

Hyperion data of crops illustrated for typical growth stages in the Uzbekistan study area. The Hyperion data cube shown
here is from a small portion of one of the two Hyperion images. The Hyperion spectra of crops are gathered from different

farm fields in the two images and their average spectra illustrated here along with the sample sizes indicated within the
bracket. The field data was collected within two days of the image acquisition.
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Hyperspectral Study of Agricultural Crops

Hyperspectral Data from Various Benchmark Areas of the World for Leading World Crops

Wheat, late vegetative (143)
——Corn-early vegetative (111)
—Rice, tasselling (92)
—Barley, early vegetative (76)

350 550 750 950 1150 1350 1550 1750 1950 2150 2350
Wavelength (nm)

—Soybeans, late vegetative (132)
Chickpea, early vegetative (76)
Cotton, early vegetative (105)

—Alfalfa, early vegetative (35)

350 550 750 950 1150 135015501750 195021502350
Wavelength (nm)

science for a changing world
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Reflectanc

Reflectance (%

—Wheat, critical (164)
Corn-late vegetative (111)
—Rice, senecing (79)
Barley, late vegetative (115)

7

T T T T T 1

350 550 750 950 1150 1350 1550 1750 1950 2150 2350
Wavelength (nm)

—Soybeans, critical (79)
Va Chickpea, critical (56)

‘L/'\—Cotton, flowering (134)
Alfalfa, late vegetative (43)

350 550 750 950 1150 1350 1550 1750 1950 2150 2350
Wavelength (nm)

Cross-site
hyperspectral
spectroradiometer
data. Cross-site mean
(regardless of which
study site (1-4, Table
2)) spectral plots of
eight leading world
crops in various
growth stages. (A)
Four crops at different
growth stages; (B)
same four crops as in
A but in different
growth stages; (C)
four more crops at
early growth stages;
and (D) same four
crops as C, but at
different growth
stages. Note: numbers
In bracket are sample
sizes.




Spectral Wavelengths and their Importance in the Study of Vegetation in different Growth Stages

(a) Cotton (flowering/senescing) (b) Soybeans (critical) (c) Potato (mid-vegetative)

&
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Spectral Wavelengths and their Importance in the Study of Vegetation in different Growth Stages

reflectance * 100 (percent)

reflectance * 100 (percent)

——yielding (50)
—— critical (23)
s0il(43)

soybeans

—— early vege (13)

—— critical (14)

500 700 900
Wavelength (nanometers)

<

reflectance * 100 (percent)

reflectance * 100 (percent)

——early vege (17)

—— late vege (8)

500 700 900

Wavebands (nanometers)

Cotton

—— late vege (6)

—— critical (11)

500 700 900
Wavebands (nanometers)
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Spectral Wavelengths and their Importance in the Study of Vegetation over Time

0.6
Soybean

Reflectance

Black soil
Typical reflectance
A spectra in agro-
00 - ecosystem surfaces
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm) (upper), and

matyrity seasonal changes of

spectra in a paddy

rice field (lower).

Asphalt

Date
//,/\ /’ﬂ\ (mm/dd)

Reflectance

850 950 1050 1150 1250 1350 1450 1550 1650 1750 18!

Wavelength (nm)
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Study of Pigments: chlorophyll

Reflectance, percent

Chl=137 mg-“m2

Chl =350 mg/ m’

550

Wavelength, nm

U.S. Geological Survey
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Study of Pigments: carotenoids/chlorophyll

Yellow leaf

Car/Chl = 8.4 /

N
=
@
<
=
@
=
-
N
<Q
=
=
R ad
|51
=
&

550 600

Wavelength, nm

e.g., Reflectance spectra of chestnut leaves...difference reflectance of (680-500 nm)/750 nm
guantitative measurement of plant senescence

Note: see chapter 6; Gitelson et al.
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Wheat Crop Versus Barley Crop Versus Fallow Farm
Hyperspectral narrow-band Data for an Erectophile (65 degrees) canopy Structure

reflectance factor

peak NIR reflectance around
910 nanometefs.
erectophile (65 degrees) structure results in steep slopes f wheat (64)
in NIR reflectance from 740-nm to 940-nm — barley (44)

fallow (9)

) o moisture sensitive and biomass related
higher reflectance of barley throughout visiblg spectrum - y4ygh centered around 980

as a result of pigmentation. Barley gfeenish nanometers
fwheat.

absorption maxima around
680 nanometers

Jus,

wavelength (nanometers)



Spectral Wavelengths and their Importance in the Study of Vegetation Structure

o
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Rainforest Vegetation Studies: biomass, tree height, land cover, species
In African Rainforests
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices

Hyperspectral Two-band Vegetation Indices (TBVIs) = 12246 unique indices for 157
useful Hyperion bands of data

" (Ri-R))
" HTBVIl,=  ------
- (R+R))

C Hyperion:

C A. acquired over 400-2500 nm in 220 narrow-bands each of 10-nm wide bands. Of these there are 196 bands that are
calibrated. These are: (i) bands 8 (427.55 nm) to 57 (925.85 nm) in the visible and near-infrared; and (ii) bands 79 (932.72 nm)
to band 224 (2395.53 nm) in the short wave infrared.

= B. However, there was significant noise in the data over the 1206-1437 nm, 1790— 1992 nm, and 2365-2396 nm spectral
ranges. When the Hyperion bands in this region were dropped, 157 useful bands remained.

- Spectroradiometer:

- A. acquired over 400-2500 nm in 2100 narrow-bands each of 1-nm wide. However, 1-nm wide data were aggregated to 10-nm
wide to coincide with Hyperion bands.

C B. However, there was significant noise in the data over the 1350-1440 nm, 1790-1990 nm, and 2360-2500 nm spectral ranges.
was seriously affected by atmospheric absorption and noise. The remaining good noise free data were in 400-1350 nm, and
1440-1790 nm, 1990-2360 nm.

O e So, for both Hyperion and Spectroradiometer we had 157 useful bands, each of 10-nm wide, over the same spectral
range.
c where, i,j = 1, N, with N=number of narrow-bands= 157 (each band of 1 nm-wide spread over 400 nm to 2500 nm),

R=reflectance of narrow-bands.
Model algorithm: two band NDVI algorithm in Statistical Analysis System (SAS). Computatlons are
performed for all possible combinations of A, (wa

ba@l,%)c 24,649 possible | ill suffice
e or below) the diagona®at 157 b




Hyperspectral Data (Imaging Spectroscopy data)
Hyperspectral Vegetation Indices (HVIs)

Unique Features and Strengths of HVIs

1. Eliminates redundant bands

removes highly correlated bands
2. Physically meaningful HVIs

e.g., Photochemical reflective index (PRI) as proxy for light use efficiency (LUE)
3. Significant improvement over broadband indices

e.g., reducing saturation of broadbands, providing greater sensitivity (e.g., an

index involving NIR reflective maxima @ 900 nm and red absorption maxima
@680 nm

4. New indices not sampled by broadbands
e.g., water-based indices (e.g., involving 970 nm or 1240 nm along with a
nonabsorption band)

5. multi-linear indices
indices involving more than 2 bands

science for a changing world
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Non-linear biophysical quantities (e.g., biomass, LAI) vs.:(a)Broadband models (top two), &
(b)Narrowband HTBVI models (bottom two)

barley

barley

LAI = 0.246532919*NDV143 = chickpea

= chickpea
R%=0.5868

A cumin
A cumin

A HTBVIs
Bl <xplain
Al about 13
- perc ent ' ' ' : — Expon. (All)
Greater
Variability broad-band NDVI43 vs. WBM
than —
Broad- « chickpea
band TM -
R indices in . fentil
veteh | IALLS; delin 0 marginal
e Al and , A vetch
biomass L : ® wheat
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o - N w = ($)] (2] ~
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® wheat

All

E
(=)]
<
=
m
2
@
£
o
S
5
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LAI = 0.117838073*NDVI910675 barley

RZ =0.7129 = chickpea

A cumin

0.2 0.4 0.6 1

Narrow-band NDV1910675 . 0.4 0.6 0.8
narrow-band NDV1910675
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Lambda vs. Lambda R-square contour plot on non-linear biophysical quantity (e.g.,
biomass) vs. HTBVI models

Contour plot of coefficient of determination (R*2) between vegetation indices at various
wavebands versus WBM of:{a)cotton crop (bottom of 45 degree line)and (b)soybeans crop
(top of 45 degree line).

m0.72-0.74
m0.7-0.72
0.68-0.7
m 0.66-0.68
m 0.64-0.66
m 0.62-0.64
0.6-0.62
0.58-0.6
0.56-0.58
0.54-0.56
0.52-0.54
0.5-052
m048-05
m0.46-048
m044-046
m042-044
04-042
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Hyperion Hyperspectral Data on Agricultural Crops from
Lambda versus Lambda R-square Contour plots of 2 Major Crops

Contour plot of A versus
- Wheat crop: contour plot of R-square A R?- values for
- valués between wheat wet biomass vs. HVIs wavelength bands
- 4 between two-band
e 07 hyperspectral vegetation
indices (HVIs) and wet
=0.951 biomass of wheat crop
= 0.9-0.95 (above diagonal) and
corn crop (below
= (0.85-0.9 diagonal). The 242
Hyperion bands were
©0.8-0.85 reduced to 157 bands
0.75-0.8 after eliminating

Wavelength 2 (nm)

uncalibrated bands and

0.7-0.75 the bands in atmospheric
¥ 1 window. HVIs were then
REES-0eT computed using the 157
= 0.6-0.65 bands leading to 12,246

BN : unique two-band

L ; : ™ 0.55-0.6 normalized difference
s Corn crop: contour plot of R-square % 0.5-0.55 HVIs each of which were
~values between corn wet biomass vs. HVIs o then related to biomass
to obtain R-square
values. These R?-values
were then plotted ina A
versus A R?-contour plot
as shown above.
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Hyperion Hyperspectral Data on Agricultural Crops from
Lambda versus Lambda R-square Contour plots of 2 Major Crops

science for a changing world

U.S. Geological Survey
U.S. Department of Interior

Wavelength 2 (nm)

M 0.95-1
M 0.9-0.95
M 0.85-0.9
0.8-0.85
0.75-0.8
0.7-0.75
0.65-0.7
0.6-0.65
M 0.55-0.6

<0.50

Contour plot of A versus
A R?- values for
wavelength bands
between two-band
hyperspectral vegetation
indices (HVIs) and wet
biomass of wheat crop
(above diagonal) and
corn crop (below
diagonal). The 242
Hyperion bands were
reduced to 157 bands
after eliminating
uncalibrated bands and
the bands in atmospheric
window. HVIs were then
computed using the 157
bands leading to 12,246
unigue two-band
normalized difference
HVIs each of which were
then related to biomass
to obtain R-square
values. These R?-values
were then plotted in a A
versus A R?-contour plot
as shown above.




Lambda vs. Lambda R-square contour plot on non-linear biophysical quantity (e.g.,
biomass) vs. HTBVI models

BVl vs. Dry biomass plots for Hyperion Data (non-linear correlatio%%
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Methods of Modeling Vegetation Characteristics using Hyperspectral Indices
Hyperspectral Multi-band Vegetation Indices (HMBVIS)

N
HMBVI, = za,R

J=1

where, OMBVI = crop variable i, R =reflectance in bands j (j=1 to N with N=157; N is number of
narrow wavebands); a =the coefficient for reflectance in band j for i th variable.

Model algorithm: MAXR procedure of SAS (SAS, 1997) is used in this study. The MAXR method
begins by finding the variable (R)) producing the highest coefficient of determination (R?) value. Then

another variable, the one that yields the greatest increase in R? value, is added................ and so
on....... so we will get the best 1-variable model, best 2-variable model, and so on to best n-variable
model....cccevunrnnnn.n. when there is no significant increase in R>-value when an additional variable is

added, the model can stop.
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Multiband HVIs for Winter Wheat in China
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Predicted biomass derived using MBVI’s involving various narrowbands in African Rainforests

_ 1 R2 val Note: Increase in R? values beyond 11
Note: Increase |n.R values bands is negligible
beyond 6 ban{s is negligible /

1.2 \
1.0

+ Fallow (n=10)

e © © o 0 0 o

N

= Primary forest
(n=16)

=
o

» Secondary forest

R-squared

0.2
Primary forest +
0.0 - . . . . . . secondary forest +
0 5 10 15 20 30 fallow (n=52)

Number of bands

Note: Increase in R? values beyond 17 bands IS negllglble
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Discriminant Model or Classification Criterion (DM) to Test

How Well 12 different Vegetation are Discriminated using different Combinations of Broadbands vs. Narrowbands?

lINelies b. Landsat ETM+
S 100
2 8- y =-2.6316x” + 16.316x + 23.684 S 100
S R?=0.9333 3 80 y =-0.313x° + 2.6915x + 36.847
« s v > 2 60 - R*=0.7857
E 40 rs E " A X X
g o . . . . g ooy
0 1 2 3 4 5 5 20 T T T T T T
Number of bands 0 ! 2 3 4 > 6 !
Number of bands
c. Advanced Land Imager (ALI) d. Hyperion
S\O, 100 =
S w0 y = -0.5436x% + 7.917x + 21.816 2 100 ——
5 R? = 0.9455 3 _ 801 et e itk
% * a & v 3 > (_\:’5 O\O 60 A P ® 2s i 2
= 401 K e T 20 o Yy =-0.1411x" + 6.2849x + 21.5013
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Hyperspectral Derivative Greenness Vegetation Indices (DGVIs)

First Order Hyperspectral Derivative Greenness Vegetation Index

(HDGVI) ( )_ These indices are integrated across the (a) chlorophyll
red edge:.626-795 nm, (b) Red-edge more appropriately 690-740 nm...... and other
wavelengths.

A PA)-(PA)

DGVI1 =%

?»1 A\,
Where, | and j are band numbers,
A = center of wavelength,
A, =0.626 pm,
A,=0.795 pm,

p = first derivative reflectance.

Wavelength (nanometer)

Note: HDGVIs are near-continuous narrow-band spectra integrated over certain wavelengths
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Hyperspectral Narrowband Study of Agricultural Crops
Methods of Hyperspectral Data Analysis
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Hyperspectral Remote Sensing of Vegetation: Knowledge Gain and Knowledge Gap After 40 years of Research

Note: Distinct separation of vegetation or crop types
or species using distinct narrowbands

Broad-band (Landsat-5 TM) NIR vs. Red Narrow-band NIR vs. Red

Numerous narrow-
bands provide unique
opportunity to
discriminate different
crops and vegetation.
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Hyperspectral Remote Sensing of Vegetation: Knowledge Gain and Knowledge Gap After 40 years of Research

Stepwise Discriminant Analysis (SDA)- Wilks’ Lambda to Test : How Well Different Forest
Vegetation are Discriminated from One Another

0.7 Lesser the Wilks’ Lambda greater is
the seperability. Note that beyond
0.6 - 10-20 wavebands Wilks’ Lambda
becomes asymptotic.
0.5 7 Fallow
3 1-3yr vs. 3-5yr vs. 5-8 yr
o]
0.4
K .
» Primary forest
é 0.3 Pristine vs. degraded
=
0.2 7 Secondary forest
Young vs. mature vs. mixed
0.1
- Primary + secondary
0~ forests + fallow areas

— < ~ All above
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Hyperion Hyperspectral Narrowband Data versus Landsat ETM+ Broadband Data on Agricultural Crops
Wilk’s Lambda of Broadband vs. Hyperspectral Narrowband data

Separating eight major

— crops of the world based on
Landsat ETM+ Wilks’ Lambda stepwise
—EO-1 ALI discriminant analysis (SDA)
method using: (a)

— EO-1 Hyperion broadband data of Landsat
ETM+ and EO-1 ALI, and (b)
hyperspectral narrowband
(HNB) data of EO-1 Hyperion
using some of the data of
three study areas. Note: the
smaller the Wilks’ Lambda
the greater the separability.
A Wilks’ Lambda of 1 means
perfect separability. It took
about 25 HNBs to achieve
near perfect separability
between eight crops.

Willk's Lambda (dimensionless)

T T T T

10 15 20 25
Number of bands (#)

~ U q
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Methods and Concepts of Quantitative SMTs

Quantitative SMTs compare class spectra of one class with class spectra of every other class & determine, quantitatively,
similarities and dissimilarities between classes through automated process; facilitates rapid identification of classes.

1. Spectral Correlation Similarity (SCS)
a. shape measure
b. Values vary between 0 to 1 (theoretically between -1 and +1).
Negatrve values have no meanrng here Ignore

2. Spectral Similarity Value (SSV)

a. Shape and magnitude measure
b. Values vary between 0 to 1.415 :
Note: Smaller the SSV value greater the similarity between class spectra and target spectra

3. Modified Spectral Angle similarity (MSAS)

a. hyper-angle measure
b. practical implementation was difficult, hence dropped.

Note: Euclidian distance
was a distance measure.
We dropped it since SSV
and SCS perform better.

Reference: Thenkabail, P.S., GangadharaRao, P., Biggs, T., Krishna, M., and Turral, H., 2007. Spectral Matching
Techniques to Determine Historical Land use/Land cover (LULC) and Irrigated Areas using Time-series AVHRR
Pathfinder Datasets in the Krishna River Basin, India. Photogrammetric Engineering and Remote Sensing. 73(9): 1029-
1040. (Second Place Recipients of the 2008 John . Dawdson ASPRS PreSIdent s Award for Practlcal papers).

science for a changing world

U.S. Geological Survey
U.S. Department of Interior



Hyperspectral Narrowband Study of Agricultural Crops
Methods of Hyperspectral Data Analysis: Spectral Matching Techniques

o
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Hyperspectral Narrowband Study of Agricultural Crops
Methods of Hyperspectral Data Analysis

Hyperspectral Data :l

Estimated
nformation
(map, tabke)

Feature selection /extraction H nformation extract ion

U

Unsupervised:
1.Basedon
nformation
content
.Proection-based
.Similarity
measures
.Dwergence
measures
.Sequential search

.Wavelet

5

o

R
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Supervsed:

1. Divergence-
based methods

. Cross
correlation

. Discriminant
analyss

N

Unsupervised :
1.Clustering
a ISODATA
b. K-mean
2. CAMM

0—\|—+

network
R

N

Supervised:

1. Statig cal
approaches

2. Classification
methods
a. SAM
b.OSP
c. MLC

3. Support Vector
Machines
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Hyperspectral Remote Sensing of Vegetation: Knowledge Gain and Knowledge Gap After 40 years of Research

Note: Overall Accuracies and K, Increase by about 30 % using 20 narrow-bands compared 6 non-thermal TM broad-bands in
classifying 12 classes

- 100

'E Overall accuracy (%) = -0.0224x2 + 1.5996x + 66.606

& R2=0, e

| -

s 90

= QHyperspectral

© 80 overall(narrowband)

§ khat(narrowband)

go) 70 overall(broadband)

= khat(broadband)

L>,‘ 60 — Poly. (overall(narrowband))

o Poly. (khat(narrowband))

)

S <«——Landsat TM

< 90

I Note: Improved accuracies in
vegetation type or species

> 40 classification: Combination of
these wavebands in Table 28.1 help

0 10 20 30 40 50  provide significantly improved
accuracies (10-30 %) in classifying
X = Number of wavebands (#) vegetation types or species types

compared to broadband data;
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Methods of Classifying Vegetation Classes or Categories

Discriminant Model or Classification Criterion (DM) to Test
How Well 5 different Crops are Discriminated using 9 Narrowbands?

Generalized Squared Distance Function: Posterior Probability of Membership in each CROPTY:
2 _ -1 _ 2 2

D (X) = (X-X )' COV (X-X ) Pr(jIX) = exp(-.5 D (X)) / SUM exp(-.5 D (X))
j j j 3 k k

Number of Observations and Percent Classified into weed

From
weed ag as cao cho te total Errors of
commission
ETe 60 15
as 24
cao 9
cho (0]
te 11
178
total 53 25 26 69 25 198
Overall accuracy = 89.9 %
Errors of ommission 4 12 6 3 28 (i.e.’ 178/198)
R r r
Kpe= (N2 X, - XX, X))/ (N-XX, *X,)
i=1 i=1 i=1

where, r is the number of rows in the matri
i reSNED R 'Se total number of observatio

Kiae = (( (178) - (9,600)) / ((198)"2 -(@;
Where, (53*60) + (25*29) + (26*22) + (69*67) + (25*20).

K. = 0.87 T



Using hyperspectral narrowband data

1. Multivariate and Partial Least Square Regression,

2. Discriminant analysis

3. unsupervised classification (e.g., Clustering),

4. supervised approaches

Spectral-angle mapping or SAM,

Maximum likelihood classification or MLC,
Artificial Neural Network or ANN, Excellent for full

Support Vector Machines or SVM, spectral
analysis.....but needs

good spectral library

O0OwW x>

......... All these methods have merit; it remains for the
user to apply them to the situation of interest.
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Hyperion Hyperspectral Narrowband Data versus Landsat ETM+ Broadband Data on Agricultural Crops
Wilk’s Lambda of Broadband vs. Hyperspectral Narrowband data

Crop classification
performance of
hyperspectral narrowbands
(HNBs) versus multispectral
broadbands (MBBs). Overall
accuracies in classifying five
agricultural crops using
simulated reflectance field
— Landsat ETM+ spectra of Landsat ETM+ and
EO-1 ALI broadband Landsat
— EO-1 ALI broadbands vs. Hyperion
hyperspectral narrowbands.
— EO-1 Hyperion Overall accuracies attained
using six non-thermal
Landsat bands was about
60% whereas about 20
hyperspectral narrow bands
provided about 90% overall

' r . T accuracy. Beyond 20 bands,
10 15 20 25 any increase in accuracy with
Number of bands (#) increase in additional bands

IS very minor.

Accuracy (%)

USGS
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Hyperspectral Remote Sensing of Crops and Vegetation
Overcoming Hughes’ Phenomenon

1. Overcoming the Hughes phenomenon (or the curse of
high dimensionality of hyperspectral data)

Reduce data volumes significantly by eliminating redundant
bands and focusing on the most valuable hyperspectral
narrowbands to study agricultural crops and vegetation.

Note:

A. Optimal hyperspectral narrowbands (HNBs) Table (next 3 slides). Leave out redundant
bands;

B. Overcoming Hughes’ Phenomenon: If the number of bands remained high, the number
of observations required to train a classifier increases exponentially to maintain
classification accuracies. Data volumes are reduced through data mining methods such
as feature selection (e.g., principal component analysis, derivative analysis, wavelets),
lambda by lambda correlation plots, and vegetation indices. Data mining methods lead to:
(a) reduction in data dimensionality, (b) reduction in data redundancy, and (c) extraction
of unigue information.
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Optimal Hyperspectral Narrowbands (HNBs) for Agriculture and Vegetation
Waveband Centers, Waveband Widths, and Targeted Application in 400-2500 nm

Table 2. Optimal (non-redundant) hyperspectral narrowbands to study vegetation and agricultural crops*?® [modified and adopted from Thenkabail et al., 2014, 2013, 2011, 2004a, 2004b, 2002, 2000].

Waveband Waveband Waveband Waveband Importance and physical significance of waveband in vegetation and cropland studies

number range center width
# A A AN

A. Ultrviolet
1 373-377 fPAR, leaf water: fraction of photosynthetically active radiation (fPAR), leaf water content

. Blue bands
403-407 Nitrogen, Senescing: sensitivity to changes in leaf nitrogen. reflectance changes due to pigments is moderate to low. Sensitive to senescing (yellow and yellow green leaves).
491-500 Carotenoid, Light use efficiency (LUE), Stress in vegetation: Sensitive to senescing and loss of chlorophyll\browning, ripening, crop yield, and soil background effects

. Green bands

513-517 Pigments (Carotenoid, Chlorophyll, anthocyanins), Nitrogen, Vigor: positive change in reflectance per unit change in wavelength of this visible spectrum is maximum around this green waveband

530.5-531.5 Light use efficiency (LUE), Xanophyll cycle, Stress in vegetation, pest and disease: Senescing and loss of chlorophyll\browning, ripening, crop yield, and soil background effects
546-555 Chlorophyll: Total chlorophyll; Chlorophyll/carotenoid ratio, vegetation nutritional and fertility level; vegetation discrimination; vegetation classification
566-575 Pigments (Anthrocyanins, Chlorophyll), Nitrogen: negative change in reflectance per unit change in wavelength is maximum as a result of sensitivity to vegetation vigor, pigment, and N.

. Red bands
676-685 Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination

. Red-edge bands
703-707 705 5 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies
718-722 720 5 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies
700-740 700-740 700-740  Chlorophyll, senescing, stress, drought: first-order derivative index over 700-740 nm has applications in vegetation studies (e.qg., blue-shift during stress and red-shift during healthy growth)

F. Near infrared (NIR) bands
841-860 850 Biophysical quantities and yield: LAI, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total chlorophyll
886-915 900 Biophysical quantities, Yield, Moisture index: peak NIR reflectance. Useful for computing crop moisture sensitivity index, NDVI; biomass, LAI, Yield.

Thenkabail et al. 2015
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Optimal Hyperspectral Narrowbands (HNBs) for Agriculture and Vegetation
Waveband Centers, Waveband Widths, and Targeted Application in 400-2500 nm

G. Near infrared (NIR) bands
14 961-980 970 Plant moisture content Center of moisture sensitive “trough"; water band index, leaf water, biomass;

H. Far near infrared (FNIR) bands
1073-1077 1075 Biophysical and biochemical quantities: leaf area index, wet and dry biomass, plant height, grain yield, crop type, crop discrimination, total chlorophyll, anthocyanin, carotenoids
1178-1182 1080 Water absorption band
1243-1247 1245 Water sensitivity: water band index, leaf water, biomass. Reflectance peak in 1050-1300 nm.

I. Early short-wave infrared (ESWIR) bands
1448-1532 1450 5 Vegetation classification and discrimination: ecotype classification; plant moisture sensitivity. Moisture absorption trough inearly short wave infrared (ESWIR)
1516-1520 1518 5]
1648-1652 1650 5 Heavy metal stress, Moisture sensitivity: Heavy metal stress due to reduction in Chlorophyll. Sensitivity to plant moisture fluctuations in ESWIR. Use as an index with 1548 or 1620 or 1690 nm..
1723-1727 1725 5

Moisture and biomass: A point of most rapid rise in spectra with unit change in wavelength in SWIR. Sensitive to plant moisture.
Lignin, biomass, starch, moisture: sensitive to lignin, biomass, starch. Discrimiating crops and vegetation.

J. Far short-wave infrared (FSWIR) bands
1948-1952 1950 Water absorption band: highest moisture absorption trough in FSWIR. Use as an index with any one of 2025 nm, 2133 nm, and 2213 am. Affected by noise at times.
2019-2027 2023 Litter (plant litter), lignin, cellulose: litter-soil differentiation: moderate to low moisture absorption trough in FSWIR. Use as an index with any one of 2025 nm, 2133 nm, and 2213 am.
2131-2135 2133 Litter (plant litter), lignin, cellulose: typically highest refectivity in FSWIR for vegetation. Litter-soil differentiation
2203-2207 2205 Litter, lignin, cellulose, sugar, startch, protein; Heavy metal stress: typically, second highest reflectivity in FSWIR for vegetation. Heavy metal stress due to reduction in Chlorophyll
2258-2266 2262 Moisture and biomass: moisture absorption trough in far short-wave infrared (FSWIR). A point of most rapid change in slope of spectra based on land cover, vegetation type, and vigor.
2293-2297 2295 Stress: sensitive to soil background and plant stress
2357-2361 2359 Cellulose, protein, nitrogen: sensitive to crop stress, lignin, and starch

Note:

1 = most hyperspectral narrowbands (HNBs)_ that adjoin one another are highly correlated for a given application. Hence from a large number of HNBs, these non-redundant (optimal) bands are selected

2 =these optimal HNBs are for studying vegetation and agricultural crops. When we use some or all of these wavebands, we can attain highest possible classification accuracies in classifying vegetation categories or crop types
3 = wavebands selected here are based on careful evaluation of large number of studies.

Thenkabail et al. 2015
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Optimal Hyperspectral Narrowbands (HNBs) for Agriculture and Vegetation
Waveband Centers, Waveband Widths, and Targeted Application in 400-2500 nm

X\éaveba Waveband Waveband
number range center
# Y A

A. Ultrviolet

1 373-377 375

B. Blue bands

2 403-407 405

3 491-500 495

C. Green bands

4 513-517 515

5 530.5-531.5 531

6 546-555 550

7 566-575 570

D. Red bands

8 676-685 680

E. Red-edge bands

9 703-707 705

10 718-722 720

11 700-740 700-740

F. Near infrared (NIR) bands
12 841-860 850
13 886-915 900

Waveband

width
AL
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5
5
700-740

20
20
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#

14
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G. Near infrared (NIR) bands
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I. Early short-wave infrared (ESWIR) bands
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J. Far short-wave infrared (FSWIR) bands
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Optimal Hyperspectral Narrowbands (HNBs) for Agriculture and Vegetation
Waveband Centers, Waveband Widths, and Targeted Application in 400-2500 nm

Visible | Shortwave Infrared
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Knowledge Gain and Knowledge Gaps: Hyperspectral Remote Sensing of Crops and Vegetation

Targeted Hyperspectral Narrowbands (HNBS)

2. Narrowbands targeted to study specific vegetation
biophysical and biochemical variable:

Each waveband in Table is uniquely targeted to study
specific vegetation biophysical, and biochemical properties
and/or captures specific events such as plant stress.

Note:
A. Targeted hyperspectral narrowbands (HNBS) in previous 3 slides: selecting Optimal
bands, eliminating redundant bands.

2. Examples of targeted HNBs: For example:

i. waveband centered at 550 nm provided excellent sensitivity to plant nitrogen,

ii.  waveband centered at 515 nm is best for pigments (carotenoids, anthocyanins),
wavebands centered at 970 or 1245 nm was ideal to study plant moisture fluctuations,
and

iii.  Lignin, cellulose, protein, and nitrogen have relatively low reflectance and strong
absorption in SWIR bands by water that masks other absorption features.
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Hyperspectral Remote Sensing of Crops and Vegetation
Targeted Hyperspectral Narrowbands (HNBs) in Study of Biochemical Properties

Ligno-cellulose

—Live grass

—— Dry grass

Sugar
Starch Sugar
Protein Starch
Protein

Protein Lignin

Chlorophylla, b

Chl

Reflectance

Reflectance

Cellulose
Li . Cellulose
ignin .
Carotenoids g Lignin . — AcerLf

Xanthophyllg .
r Acerlit

—— Betula

Fagus

Cellulo%e

1350 1850

o

300 500 A0 900 1100 1300 1500 1700 1300 2100 2300
Wavelength (nm)

Wavelength (nm)
The reflectance spectra with characteristic Reflectance spectra of leaves from a senesced birch (Betula),
absorption features associated with plant ornamental beech (Fagus) and healthy and fully senesced
biochemical constitutents for live and dry grass maple (AcerLf, Acerlit) illustrating Carotenoid (Car),

(Adapted from Hill [13]). Anthocyanin (Anth), Chlorophyll (Chl), Water and Ligno-
cellulose absorptions.

See chapter 9; Thenkabail et al., 2012 See
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Hyperspectral Remote Sensing of Crops and Vegetation

Targeted Hyperspectral Narrowbands (HNBs) in Study of Biophysical Properties
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Knowledge Gain and Knowledge Gaps: Hyperspectral Remote Sensing of Crops and Vegetation
Targeted Hyperspectral Vegetation Indices (HVIs) in Study of Crops and Vegetation

3. HVIs for Improved models of agricultural crops and
vegetation biophysical and biochemical variables

HVIs provide significantly improved models of crop and
vegetation quantities such as biomass, LAI, NPP, leaf
nitrogen, chlorophyll, carotenoids, and anthocyanins.

science for a changing world
U.S. Geological Survey
U.S. Department of Interior




Two-band Hyperspectral Vengetation Indices (HVIS)

In 400-2500 nm Waveband Range

Hyperspe Hyperspe
Band ctral Bandwidt ctral Bandwidt Hyperspectral vegetation Best index under each catodor
number (#) narrowba h (AA1) narrowba h (AA2) index (HVI) gory

nd (A1) nd (A2)
HBSI1 855 20 682 5 (855-682)/(855+682)
HBSI2 910 20 682 5 (910-682)/(910+682) HBSI: Hyperspectral biomass and structural index
HBSI3 550 5 682 5 (550-682)/(550+682)
HBCI8 550 5 515 5 (550-515)/(550+515) _ o

HBCI: Hyperspectral biochemical index

HBCI9 550 5 490 5 (550-490)/(550+490)

HRE|14 700-740 40 first-order derivative integrated over red-edge

(700-740 nm) HREI: Hyperspectral red-edge index
HREI15 855 5 720 5 (855-720)/(855+720)
HWMI17 855 20 970 10 (855-970)/(855+970)
HWMI18 1075 5 970 10 (1075-970)/(1075+970)
HWMI19 1075 5 1180 5 (1075-1180)/(1075+1180) HWMI: Hyperspectral water and moisture index
HWMI20 1245 5 1180 5 (1245-1180)/(1245+1180)
HLUE24 570 5 531 1 (570-531)/(570+531) HLEI: Hyperspectral light-use efficiency index
HLCI25 2205 5 2025 1 (2205-2025)/(2205+2025) HLCI: Hyperspectral legnin cellulose index

5™,

U.S. Department of Interior



Two-band Hyperspectral Vengetation Indices (HVIS)
In 400-2500 nm Waveband Range

BVI vs. Dry biomass plots for Hyperion Data (non-linear corre,-latio%55
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Reflectance

[}

In 400-2500 nm Waveband Range

—Live grass

——Drygrass

Sugar
Starch Sugar
Protein Starch
Protein

Protein Lignin

Chlorophylia, b Water

Cellulose
L _ Cellulose
ignin Lignin

Lignin
Celluloge,

300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Wavelength (nm)

Two-band Hyperspectral Vengetation Indices (HVIS)

Reflectance, percent

Car/Chl= 8.4

550 600
Wavelength, nm

Anthocyanin absorption, per cent

Anth=175 mg/m*

Wavelength, nm

Reflectance, 1-Transmittance

EWT (g/cm?)
—— 0010
0.018
0.026
0.034
0.042
—— 0.050

y
t t
900 1100 1300 1500 1700 1900 2100 2300 2500

Wavelength (nm)

It is also important to know what
specific wavebands are most
suitable to study particular
biophysical and/or biochemical
properties. As examples, plant
moisture sensitivity is best studied
using a narrowband (5 nm wide or
less) centered at 970 nm, while
plant stress assessments are best
made using a red-edge band
centered at 720 nm (or an first
order derivative index derived by
integrating spectra over 700-740
nm range), and biophysical
variables are best retrieved using a
red band centered at 687 nm. These
bands are, often, used along with a
reference band to produce an
effective index such as a two-band
normalized difference vegetation
index involving a near infrared
(NIR) reference band centered at
890 nm and a red band centered at
687 nm.

Gitelson et al.

R
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Hyperspectral Remote Sensing of Crops and Vegetation

Targeted Hyperspectral Vegetation Indices (HVIs) in Study of Crops and Vegetation

0.20 4
—— Site 6 Brown-green
| === Site 7 Green-brown

Canopy Reflectance

0.00 e e LA e
400 500 600 700 800
Wavelength (nm)

Index
—l

Equation

Reference
—

Structure (LAI, green biomass, fraction)

*NDVI (Ryir-Rea) Ryt R ) Rouse et al.[15]

*SR Rnir/Rred Jordan [3]

*EVI 2.5 RuipReg) (Ruig H6* R 7.5* Ryt 1) Huete et al.[23]
*NDWI (Rgs7-Ry241 (Rgs7+R 1241) Gao [29]
**WBI Rygo/Raomy Pefuelas et al.[28]
*ARVI (Ruip=[Ryea Y * (RptueRre) D/(RnimH Rrea¥ * (RoieRret) ) Kaufman & Tanré [22]
*SAVI Huete [21]

[(Ryir-Ryea) (Ruipt Ryeg P L) *(141)

**IDL_DGVI

Y 1R () = B (geg o) 182,

Elvidge & Chen [1]

**1DZ_DGVI

‘(A1 84,

Elvidge & Chen [1]

*VARI

R (Rgreer RecqRe)

Gitelson et al.[13]

*Vigreen

(RereerRica)(Rgrecr* Reca)

Gitelson et al.[13]

Biochemical
Pigments

**SIPI (Ryoo=Ruys)/(Rygo-Rego) Pefiuelas et al. [31]
**PSSR (Rgoo/Re75): (Rygao/Rysp) Blackburn [30]
**PSND [(Rgo0-Re7s )/ (Ryggo+Rers) It [(Rygo-Reso) (Ryggo+Resp)] Blackburn [32]
**PSRI (Rgs0-Rs00)/Rysy Merzlyak et al. [33]

Chlorophyll
**CARI [(R300-Re70)-0.2*(Ryg0-Rss5) | Kim [34]

**MCARI

[(Rag0

-Rg70)-0-2* (R00-Rss50) 1 *(R700/Rg0)

Daughtry et al. [35]

**Clrog cdge

Ruii/Rrcq cdger |

Gitelson et al. [36]

Anthocyanins

_ Wheat: y=-5.707x + 5.694
2 r R=0.877 SE=0.128 . = wheat:y =-123.55x + 0.6618
N=156 ©Rice 2005 R = 0.857 SE=0.147
ST ORice 2009 L=0.562 N=228
4 CO'Wheat 2005-2006
= A'Wheat 2007-2008 z
= m] A &
=3 o
z Z
=, .
< rice
1 [Rice: y=-a.409x+ 4119 Bwheat
Rz=0.860 SE =0.068 v =-49.592x + 0.5235
N—158 R = 0.775 SE=0.115
0 P L , , L=-0.009 N=206
0 0.2 0.4 0.6 0.8 1 ) * * * 4
i 0.08 0.06 0.04 0.02 0
RVI (R722, Rg12) SAVI (R722. Ry2g)

Note: Narrowbands targeted to study specific vegetation biophysical and
biochemical variable: Each waveband in Table was uniquely targeted to
study specific vegetation biophysical, and biochemical properties and\or
captures specific events such as plant stress. For example, a waveband
centered at 550 nm provides excellent sensitivity to plant nitrogen, a
waveband centered at 515 nm is best for pigments (carotenoids,
anthocyanins), and a waveband centered at 970 nm or 1245 nm was ideal
to study plant moisture fluctuations;

R
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Chapters 8, 14, 21, Thenkaball et a

2012 '...

**ARI (/R green)(1/R o cded) Gitelson et al.[40]
**mARI [O/R green)(1/R 1o e 1*Ruuir Gitelson et al. [36]
**RGRI L L — Gamon & Surfus [7]

**ACI I(.A_,,u.,,“l{\,k Van den Berg & Perkins [41]

Carotenoids
**CRII I (1/R510)-(1/Rs50) Gitelson et al.[42]
**CRI2 I (1/R410)-(1/R500) Gitelson et al. [42]
Water
*NDII (Ruig-Rswiry/(RuigtRewir) Hunt & Rock [12]
*NDWL. **WBI See Above See Above
*MSI Rwir/Rair Rock et al. [43]
Lignin &Cellulose/Residues
*+CAl T 100*[0.5%(R2031+R2211)-R2101] Daughtry [47]
**NDLI I [log(1/R754)-log(1/R 1550)]/[10g(1/R 754)+l0g(1/R 650)] Serrano et al. [48]
Nitrogen
**NDNI l [log(1/R5y0)-log(1/R 450) 1/ [1og(1/R 5 10)+log(1/R 1450)] Serrano et al. [48]
Physiology

Light Use Efficiency

**RGRI.**SIPI

See Above

See Above

**PRI (Rs30-Rs70)(Rs30+Rs79) Gamon et al. [9]
Stress
*MSI See Above See Above

**REP

I(max first derivitive: 680-750 nm )

Horler et al. [10]

**RVSI
T 7

[(R

Merton & Huntington [5|



Two-band Hyperspectral Vengetation Indices (HVIS)
In 400-2500 nm Waveband Range

LAI = 0.2465¢%2219"NDVI43 ..:.g.
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Note: Improved models of
vegetation biophysical and
biochemical variables: The
combination of wavebands
in Table 28.1 or HVIs derived
from them provide us with
significantly improved
models of vegetation
variables such as biomass,
LAI, net primary productivity,
leaf nitrogen, chlorophyll,
carotenoids, and
anthocyanins. For example,
stepwise linear regression
with a dependent plant
variable (e.g., LAI, Biomass,
nitrogen) and a combination
of “N” independent variables
(e.g., chosen by the model
from Table 28.1) establish a
combination of wavebands
that best model a plant
variable

Narrow-band indices
explain about 13 percent
greater variability in
modeling crop variables.




Knowledge Gain and Knowledge Gaps: Hyperspectral Remote Sensing of Crops and Vegetation

Crop or Vegetation Type or Species Separation

4. Distinct separation of vegetation types or species
Separating vegetation specific narrowbands, often, help
discriminate two crop types or their variables distinctly when
compared with broadbands.

science for a changing world
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Hyperspectral Remote Sensing of Crops and Vegetation

Crop Type Separation
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Relationships  between red and near infrared (NIR)  \jgriation in NIR-1/red and SWIR-1/green reflectance
Hyperion bands for the studied crop types. The triangle is ratios for the crop types under study.
discussed in the text.

Note: see chapter 17
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Hyperspectral Remote Sensing of Crops and Vegetation

Crop Type Separation

Broad-band (Landsat-5 TM) Narrow-band

= lentil = lentil

* wheat
e wheat

Numerous
narrow-bands
provide unique
opportunity to
~ discriminate
_different crops

U.S. Geological Survey
U.S. Department of Interior



Knowledge Gain and Knowledge Gaps: Hyperspectral Remote Sensing of Crops and Vegetation
Classification Accuracies using Hyperspectral vs. Multispectral
5. Improved accuracies in crop or vegetation type or species
classification

Hyperspectral narrowbands (HNBs) help provide significantly
Improved accuracies (10%—-30%) in classifying vegetation types
or species types compared to broadband data.

science for a changing world
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Hyperspectral Remote Sensing of Crops and Vegetation

Classification Accuracies using Various Combinations of Selective Hyperspectral Bands

Best 4 bands 550, 680, 850, 970

Best 6 bands 550, 680, 850, 970, 1075, 1450

Best 8 bands 550, 680, 850, 970, 1075, 1180, 1450, 2205

Best 10 bands 550, 680, 720, 850, 970, 1075, 1180, 1245, 1450, 2205

Best 12 bands 550, 680, 720, 850, 910, 970, 1075, 1180, 1245, 1450, 1650, 2205

Best 16 bands 490, 515, 550, 570, 680, 720, 850, 900, 970, 1075, 1180, 1245, 1450, 1650, 1950, 2205

Best 20 bands

490, 515, 531, 550, 570, 680, 720, 850, 900, 970, 1075, 1180, 1245, 1450, 1650, 1725, 1950, 2205, 2262, 2359

100
90 -
80 -
. 704
X
> 60 - — Landsat ETM+
S 50-
3 — EO-1 ALI
2 40 .
— EO-1 Hyperion
30
20 -
10 +
U q : O T T T T T T 1 \‘
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Knowledge Gain and Knowledge Gaps: Hyperspectral Remote Sensing of Crops and Vegetation
Whole Spectral Analysis Versus Selective Optimal Bands

6. Whole Spectral Analysis (e.g., continuous and entire spectra
over 400—-2500 nm) using such methods as partial least squares
regression (PLSR), wavelet analysis, continuum removal, and
spectral angle mapper (SAM) is very useful in many instances
even if data volumes are very high.

Note:

1. Studying the structure of plant canopy (e.g., erectophile vs. planophile) through slope
of the spectrain the NIR shoulder (760-900 nm);

2. blueshift in the red-edge (700-740 nm) portion of the spectrum indicates stress due to
many causes such as drought and heavy metals and a redshift (shift of the red-edge

position toward longer wavelengths) indicates chlorophyll accumulation.

science for a changing world
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Hyperspectral Remote Sensing of Crops and Vegetation
Whole Spectral Analysis Versus Selective Optimal Bands

0.6

Soybean

NIR shoulder (760 nm
to 900 nm) for
mature\senescing rice
versus Ricein
Vegetative phases

Reflectance

Typical reflectance
et Il spectra in agro-
ecosystem surfaces
(upper), and
seasonal changes of
spectra in a paddy
rice field (lower).
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Wavelength (nm)
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Date
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Reflectance

See chapter 3
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reflectance * 100 (percent)
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Hyperspectral Remote Sensing of Crops and Vegetation
Whole Spectral Analysis Versus Selective Optimal Bands

Erectophile

—— yielding (50)
—— critical (23)
s0il(43)

reflectance * 100 (percent)

Planophile

——early vege (13)

—— critical (14)




Hyperspectral Remote Sensing of Crops and Vegetation
7. Hyperspectral Data Also Provides Data Continuity for Existing Sensors

Using hyperspectral
narrowband data one can
produce any broadband
data (e.g., Landsat,
Resourcesat,

SPOT). Thereby,
hyperspectral sensors

Reflectance (%)
Reflectance (%)

950 1250 1550 1850 2150

not only help advance Wavelength (nm) Simulated Landsat ETM+ Bands
remote sensin g science Wheat, late vegetative (143) Corn-early vegetative (111)

throu g h im aging — Rice, tasselling (92) — Barley, early vegetative (76)
spectroscopy, but also — Wheat, critical (164) Corn-late vegetative (111)
facilitate data continu Ity — Rice, senecing (79) Barley, late vegetative (115)

of broadband sensors — Soybeans, late vegetative (132) — Chickpea, early Vegetative (76)

Cotton, early vegetative (105) — Alfalfa, early vegetative (35)
Soybeans, critical (79) Chickpea, critical (56)
— Cotton, flowering vegetative (134) Alfalfa, late vegetative (43)

such as Landsat,
SPOT, and IRS.
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Hyperspectral Remote Sensing of Crops and Vegetation
7. Hyperspectral Data Also Provides Data Continuity for Existing Sensors

Generating Broadbands (e.g., Landsat, IKONOS) from Narrowbands (e.g., HyspIRI)
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Imaging spectroscop?/: 242 hyerspectralubands, each of
5or 10 nm wide, in 400-2500 nm spectral range.
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Hyperspectral (Imaging Spectroscopy) Narrowband Study of Agricultural Crops
Hyperspectral Narrowbands versus Multispectral Broadbands

Optimal hyperspectral narrowbands (HNBS).
Current state of knowledge on hyperspectral
narrowbands (HNBs) for agricultural and
vegetation studies (inferred from [8]). The
whole spectral analysis (WSA) using
contiguous bands allow for accurate

DRSS e retrieval of plant biophysical and

B1 A . BS  B6 87 biochemical quantities using methods like

_ continuum removal. In contrast, studies on

— Wheat, late vegetative (143) ) ) ) ) )
BN e o wide array of biophysical and biochemical
— Rice, tasselling . .
— Barley, early vegetative (76) variables, species types, crop types have

Wheat, critical (164) . X

Consiue g established: (a) optimal HNBs band centers

Rice, (79) . .

Barley, Iste vegetative (115) and band widths for vegetation/crop

characterization, (b) targeted HVIs for
specific modeling, mapping, and classifying
vegetation/crop types or species and
parameters such as biomass, LAI, plant
water, plant stress, nitrogen, lignin, and
pigments, and (c) redundant bands, leading
to overcoming the Hughes Phenomenon.
These studies support hyperspectral data
characterization and applications from

950 1100 1250 1400 1550 1700 1850 2000 2150 2300 missions such as Hyperspectral Infrared
Imager (HyspIRI) and Advanced Responsive
Tactically Effective Military Imaging
Spectrometer (ARTEMIS). Note: sample
sizes shown within brackets of the figure
legend refer to data used in this study.
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Hyperspectral Remote Sensing of Crops and Vegetation
8. Spectral Signature Data Bank of Vegetation Species (e.g., P. Africana)
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Hyperspectral Remote Sensing of Crops and Vegetation

9. Many Uses of Hyperspectral Data

Optimal hyperspectral narrowbands (HNBS).
Current state of knowledge on hyperspectral
Biophysical quantity and yield W : narrowbands (HNBs) for agricultural and
(e.g., biomass, LAI, plant density) 17 5,2173) —\Wheat, late vegetative (143) . . .
(687, 760, 855, 1045, 1100) EEPINPPNINII \cgetation studies (inferred from [8]). The
Chlorophyll / 0 g
storIon \ —Rice, tasselling (92) whole spectral analysis (WSA) using
gl SCENEES WO contiguous bands allow for accurate
Whaat,sritical 1254) retrieval of plant biophysical and
——Corn-late vegetative (111) . . .. . .
gni, cellose, | — Rice, senecing (79) blochemlcal guantities using method_s like
plant litter (1548, ~——Barley, late vegetative (115) continuum removal. In contrast, studies on
\ 1620, 1690, 2025, - - o o g
2133, 2205) wide array of biophysical and biochemical
variables, species types, crop types have
established: (a) optimal HNBs band centers
FR— and band widths for vegetation/crop
characterization, (b) targeted HVIs for
specific modeling, mapping, and classifying
)| \ \ vegetation/crop types or species and
parameters such as biomass, LAI, plant
water, plant stress, nitrogen, lignin, and
pigments, and (c) redundant bands, leading
to overcoming the Hughes Phenomenon.

/V Heavy metal ‘ These studies support hyperspectral data
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Knowledge Gain and Knowledge Gaps: Hyperspectral Remote Sensing of Crops and Vegetation

Beyond Hyperspectral Data: Hyperspectral+LiDAR+Thermal

Strengths of hyperspectral data in biophysical and biochemical characterization of
vegetation are well known.

LiDAR
However, better characterization and modeling of the vegetation height/depth, crown
sizes, basal area, biomass, and structure will require LIDAR.

Thermal
Further plant water properties are better understood using thermal data.

Hyperspectral+LiDAR+Thermal
Given these facts, simultaneous acquisition and integration of hyperspectral data along
with LIDAR and thermal data are considered the future of remote sensing.
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Hyperspectral Data on Tropical Forests
Advances in Combining Hyperspectral and LIDAR over Tropical Forests

Hyperspectral for LIDAR for

canopy canopy structure including
biochemistry height,
crown shape,
leaf area,
biomass, and
basal area

Hyperspectral + LIDAR for

characterize parameters such as
height
canopy cover
leaf area
canopy chlorophyll content, and
canopy water content

Note: see chapter 20, Thomas et al.
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Hyperspectral Remote Sensing of Vegetation
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Remote Sensing Handbook: Vol. I, Il, lll; 82 Chapters (Editor: Prasad S. Thenkabail)

REMOTE SENSING HANDBOOK
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Overall, the three key factors in considering data to be hyper
spectral are the following:

9.1 Introduction

Remote sensing data are considered hyperspectral when the

data are gathered from numerous wavebands, contiguously 1. Contiguity in data collection: Data are collected contigu
overan entire range of the spectrum (e.g., 400-2500 nm). Goetz ously over a spectral range (e.g., wavebands spread across
(1992) defined hyperspectral remote sensing as “The acquisition 400-2500 nm).

e
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of images in hundreds of registered, contiguous spectral bands
such that for each picture element of an image it is possible
to derive a complete reflectance spectrum.” However, Jensen
(2004) defines hyperspectral remote sensing as “The simulta
neous acquisition of images in many relatively narrow, con-
tiguous and/or non contiguous spectral bands throughout the
ultraviolet, visible, and infrared portions of the electromagnetic
spectrum.”
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. Number of wavebands: The number of wavebands by itself
does not make the data hyperspectral. For example, if there
are numerous narrowbands in 400-700 nm wavelengths,
but have only a few broadbands in 701-2500 nm, the data
cannot be considered hyperspectral. However, even rela
tively broad bands of width, say, for example, 30 nm band
widths spread equally across 400-2500 nm, for a total of ~70
bands, are considered hyperspectral due to contiguity.
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Hyperspedhral narow-band (or imaging speciroscopy) speciral data are fast emerging as practical
solutions in modeling and mapping vegetation. Recent research has demonsirated the advances
in and merit of hyperspectral data in a range of applications—including quantifying agricultural

crops, modeling forest canopy biochemical properties, identifying plants affected by contaminants,
charadterizing wetlands, and mapping invasive species. The need for significant improvements
in quantifying, modeling, and mapping plant chemical, physical, and water properties is more

aritical than ever before to reduce uncertainties in our understanding of the Earth and to better

sustain it. There is also a need for a synthesis of the vast k ledge spread throughout the

literature from more than 40 years of research.

Hypersp | Remote Sensing of Veg integrates this knowledge, guiding readers

to harness the capabilities of ad in applying hyperspectral remote sensing technology to Ligno-cellulose

% Reflectance (NIR at 864 nm)

the study of terrestrial vegetation. Taking a practical approach to a complex subject, the book
demonstrates the experience, utility, methods and models used in studying vegetation using
hyperspedtral data. Written by leading experts, including pioneers in the field, each chapter
presents specific applications, reviews state-ofthe-art knowledge, highlights advances made, and

2 ‘ “ %
provides guidance for the appropriate use of hyperspectral data in the study of vegetation. % Reflectance (Red at 660 nm)
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This comprehensive book brings together the best global expertise on hyperspec'rul remore
sensing of ugncuh/re crop water use, plant species detecti

and bioch ling, erop produdivity and water productivi and modeli g. It
provides the pemnem facts, synthesizing ﬁndmgt 50 nhur reuders can ga'  the correct picture on .
issues such as the best bands for their practi PP methods of analysis using 44

whole spectra, hyperspectral vegetation indices targeted to study specific biophysical and Wl o)

biochemical quantities, and methods for detecting parameters such as crop moisture variability, H
chlorophyll content, and stress levels. A collective “knowledge bank,” it guides professiondls fo vete

adopt the best practices for their own work. Edifed By
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Thenkabail, P.S., Lyon, G.J., and Huete, A. 2012. Book entitled: “Advanced Hyperspectral Remote
Sensing of Terrestrial Environment”. 28 Chapters. CRC Press- Taylor and Francis group, Boca Raton,
London, New York. Pp. 700+ (80+ pages in color). To be published by October 31, 2012.
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Abstract—The overarching goal of this study was to establish
optimal hyperspectral vegetation indices (HVIs) and llvpcrsp(-c-
tral narrowbands (HNBs) that best characterize, cla
and map the world’s main 2 al crops. The primary
tives were: (1) crop biophysical modeling through HN
(2) accuracy a: ment of crop type d
Lambda through a discriminant model, and (3) meta-analy:
select o] al HNB i
ture. The study was conducted using two Earth Observing One
(EO-1) Hyperion scenes and other surface hyperspectral data for
the eight leading worldwide crops (wheat, corn, rice, barley, soy-
beans, pulses, cotton, and alfalfa) that occupy ~70% of all crop-
land areas globally. This study integrated data collected from mul
tiple study areas in various agroecosystems of Africa, the Middle
East, Central Asia, and India. Data were collected for the eight crop
types in six distinct growth stages. These included (a) field spec-
troradiometer measurements (350-2500 nm) sampled at 1-nm dis-
crete handwidths, and (I)) field hloph\ sical nrnbles (e.g., bion

The eight crops were described .mtl cla
~20 HNBs. The accuracy of classifying these 8 croj
was around 95%, which was ~25% better than the multi-spectral
ble from Landsat-7's Enhanced Thematic Mapper+ or
ager. Further, based on this re

33 optimal HNBs and an equal number of specific two-band nor-
malized difference HVIs to best model and study specific biophys-
ical and biochen es of major agricultural crops of the
world. Redundant bands identified in this study will help overcome
the Hughes Phenomenon (or “the curse of hig|

in hyperspectral for a particular appllmuon (e.g. hmph_\s-
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Color versions of one or more of the figures in this paper are available online
at http://iceexplore.icee.org
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ical characterization of crops). The findings of this
significant contribution to future hyperspectral
1yspIRI.

erms—Hyperion, field reflectance, i ng spectroscopy,
HyspIRI, biophysical parameters, hyperspectral vegetation in-
dices, hyperspectral narrowbands, broadbands.

ons such as

I. INTRODUCTION AND RATIONALE

UMEROUS studies (e.g.. [1]. [2]) have shown that
N the Hyperion imaging spectrometer onboard the Earth
Observing One (EO-1) satellite has provided significantly
enhanced data over conventional multi-spectral remote sensing
systems. Hyperspectral narrowbands (HNBs) and hyperspec-
tral vegetation indices (HVIs) derived from EO-1 and field

ral measurements in the 400-2500 nm spectrum allow
specific characteristics of agricultural crops.

omass, leaf area index (LAI), pigment content

y (e.g., due

applic IlOl’L Illlab ¢ ) ) es (e.g.,
lignin, cellul 5 f

perspec! a ml_\' impro thu aracterization,
disc g, and mapping of crops and v cgsldlmn.

modeling and mapp icultural ¢
such as biophysical and biochemical quantities [1] [\]
[13], (b) crop type/species discrimination [9]-[12], [15], (c)
stress factors [14], [15]. and (d) crop and water productivity.
and energy balance | | These benefits will help us better
understand a broad range of agricultural applications involving
droughts [2], [3], food security [8]-[12], biodiversity [9], [11],
and invasive species [9], [24]. Nevertheless, there are still
significant knowledge gaps that require further research
Contiguous bands of spectrometer data allow for accurate
retrieval of plant biophysical and biochemical quantities using
methods like continuum removal, first discussed by Clark and
Roush in 1984 [25]-[28]. However, since information about
agriculture is time sensitive, approXimate analyses, quickly
ained using one or more HV be more useful than

1939-1404/831.00 © 2013 IEEE
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